精英家教網(wǎng)如圖,四邊形ABCD是正方形,以CD為邊作等邊三角形CDE,BE與AC相交于點M,則∠AMD的度數(shù)是( 。
A、75°B、60°C、54°D、67.5°
分析:連接BD,根據(jù)BD,AC為正方形的兩條對角線可知AC為BD的垂直平分線,所以∠AMD=AMB,要求∠AMD,求∠AMB即可.
解答:精英家教網(wǎng)解:如圖,連接BD,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,
∴∠EBC=∠BEC=
1
2
(180°-∠BCE)=15°
∵∠BCM=
1
2
∠BCD=45°,
∴∠BMC=180°-(∠BCM+∠EBC)=120°,
∴∠AMB=180°-∠BMC=60°
∵AC是線段BD的垂直平分線,M在AC上,
∴∠AMD=∠AMB=60°
故選B.
點評:本題考查的正方形的對角垂直平分的性質(zhì),根據(jù)垂直平分線的性質(zhì)可以求得∠AMD=∠AMB,確定AC和BD垂直平分是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案