如圖是⊙O中的一部分,弦AB的長為24cm,圓心O到AB的距離OD為5cm,則⊙O的半徑OB長為( 。
A.13cmB.14cmC.15cmD.24cm

∵OD⊥AB,AB=24cm,
∴AD=BD=12cm,
在Rt△OBD中,BD=12cm,OD=5cm,
根據(jù)勾股定理得:OB=
BD2+OD2
=13cm,
則圓的半徑為13cm.
故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是一個(gè)單心圓隧道的截面,若路面AB寬為20米,凈高CD為14米,則此隧道單心圓的半徑OA是( 。
A.10B.
74
7
C.
74
5
D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在⊙O中,弦AB=24cm,圓心O到弦AB的距離為5cm,則⊙O的半徑為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一條公路的轉(zhuǎn)變處是一段圓。磮D中弧CD,點(diǎn)O是弧CD的圓心),其中CD=600米,E為弧CD上一點(diǎn),且OE⊥CD,垂足為F,OF=300
3
米,則這段彎路的長度為( 。
A.200π米B.100π米C.400π米D.300π米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

半徑為R的弦AB=2r,則AB的弦心距是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

趙州橋建于1400多年前的隋朝,是我國石拱橋中的代表性的橋梁,橋拱是圓弧形(如圖).經(jīng)測量,橋拱下的水面距拱頂6m時(shí),水面寬34.64m,已知橋拱跨度是37.4m,運(yùn)用你所學(xué)的知識(shí)計(jì)算出趙州橋的大致拱高.(注意:運(yùn)算時(shí)取37.4=14
7
,34.64=20
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為⊙O的直徑,CD⊥AB于點(diǎn)E,交⊙O于點(diǎn)D,OF⊥AC于點(diǎn)F.請(qǐng)寫出一條與BC有關(guān)的正確結(jié)論:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1是某學(xué)校存放學(xué)生自行車的車棚的示意圖(尺寸如圖所示),車棚頂部是圓柱側(cè)面的一部分;圖2是車棚頂部截面的示意圖.
(1)用尺規(guī)在圖2中作出弧AB所在圓的圓心(保留作圖痕跡,不寫作法與證明);
(2)車棚頂部是用一種帆布覆蓋的,由圖1中給出數(shù)據(jù)求覆蓋棚頂?shù)姆嫉拿娣e(不考慮接縫等因素,計(jì)算結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一條排水管的截面如圖所示,已知排水管的截面半徑OB=5,截面圓圓心為O,當(dāng)水面寬AB=8時(shí),水位高是多少( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案