已知:如圖,AD是Rt△ABC的角平分線,AD的垂直平分線EF交CB的延長(zhǎng)線于點(diǎn)F,求證:FD2=FB•FC.
分析:首先連接AF,可證得△AFC∽△BFA,然后由相似三角形的對(duì)應(yīng)邊成比例證得FA2=FB•FC,則可得FD2=FB•FC.
解答:證明:連接AF,
∵EF是AD的垂直平分線,
∴AF=DF,
∴∠FAE=∠FDE,
∵∠FAE=∠FAB+∠BAD,∠FDE=∠C+∠CAD,且∠BAD=∠CAD,
∴∠FAB=∠C,
∵∠AFB是公共角,
∴△AFB∽△CFA,
AF
FC
=
FB
AF
,
∴FA2=FB•FC,
即FD2=FB•FC.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì),線段垂直平分線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AD是△ABC的高,試判斷∠DAE與∠B、∠ACB之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為( 。
A、3:2B、9:4C、2:3D、4:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AD是⊙O的弦,OB⊥AD于點(diǎn)E,交⊙O于點(diǎn)C,OE=1,BE=8,AE:AB=1:3.精英家教網(wǎng)
(1)求證:AB是⊙O的切線;
(2)點(diǎn)F是弧ACD上的一點(diǎn),當(dāng)∠AOF=2∠B時(shí),求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AD是一條直線,∠1=65°,∠2=115°.求證:BE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AD是△ABC的平分線,點(diǎn)E在BC上,點(diǎn)G在CA的延長(zhǎng)線上,EG交AB于點(diǎn)F,且∠AFG=∠G.求證:GE∥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案