21、如圖,△ABC中,AD⊥BC于D點(diǎn),E為BD上的一點(diǎn),EG∥AD,分別交AB和CA的延長(zhǎng)線于F、G兩點(diǎn),∠AFG=∠AGF.
(1)求證:△ABD≌△ACD;
(2)若∠ABC=40°,求∠GAF的大。
分析:(1)由已知條件可直接得到AD為公共邊,∠ADB=∠ADC=90°,據(jù)兩直線平行間接可得到∠CAD=∠BAD,即可判定△ABD≌△ACD(ASA).
(2)利用(1)中結(jié)論易求得∠C、∠BAC的度數(shù),即可得∠GAF的度數(shù).
解答:(1)證明:∵AD⊥BC,
∴∠ADB=∠ADC=90°.
∵GE∥AD,
∴∠CAD=∠AGF,∠BFE=∠BAD,
∵∠BFE=∠AFG,∠AFG=∠AGF,
∴∠CAD=∠BAD;
∴△ABD≌△ACD(ASA).

(2)解:∵∠ABC=40°,
∴∠C=40°,
∴∠CAD=50°,
∴∠BAC=100°,
∴∠GAF=80°.
點(diǎn)評(píng):本題主要考查判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.本題還涉及到三角形外角和內(nèi)角的關(guān)系知識(shí)點(diǎn),比較簡(jiǎn)單.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案