(本小題10分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.
(Ⅰ)求證:△AMB≌△ENB;
(Ⅱ)①當(dāng)M點(diǎn)在何處時(shí),AM+CM的值最。
②當(dāng)M點(diǎn)在何處時(shí),AM+BM+CM的值最小,并說(shuō)明理由;
(Ⅲ)當(dāng)AM+BM+CM的最小值為時(shí),求正方形的邊長(zhǎng).
 
解:⑴∵△ABE是等邊三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠ABM=∠NBE.
又∵M(jìn)B=NB,
∴△AMB≌△ENB(SAS). ………………3分
⑵①當(dāng)M點(diǎn)落在BD的中點(diǎn)時(shí),AM+CM的值最小. ………………5分
②如圖,連接CE,當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),

AM+BM+CM的值最小.                          ………………7分
理由如下:連接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等邊三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根據(jù)“兩點(diǎn)之間線段最短”,得EN+MN+CM=EC最短
∴當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長(zhǎng). …………8分
⑶過(guò)E點(diǎn)作EF⊥BC交CB的延長(zhǎng)線于F,
∴∠EBF=90°-60°=30°.
設(shè)正方形的邊長(zhǎng)為x,則BF=x,EF=.
在Rt△EFC中,
∵EF2+FC2=EC2
∴(2+(x+x)2.
解得,x=(舍去負(fù)值).
∴正方形的邊長(zhǎng)為.                         ………………10分          
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(11·貴港)(本題滿分9分)
如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某人到瓷磚店去買一種多邊形的瓷磚,用來(lái)鋪設(shè)無(wú)縫的地板,他購(gòu)買的瓷磚不可
能的是(  )
A.等邊三角形B.正方形C.正六邊形D.正八邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011山東濟(jì)南,11,3分)如圖,在等腰梯形ABCD中,AD∥BC,對(duì)角線AC、BD相交于點(diǎn)O,下列結(jié)論不一定正確的是( )

A.AC="BD          "   B.∠OBC=∠OCB
C.S△AOB=S△DOC                 D.∠BCD=∠BDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(11·十堰)如圖等腰梯形ABCD中,AD//BC,AB//DE,BC=8,AB=6,AD=5,則△CDE的周長(zhǎng)是          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題:①坐標(biāo)平面內(nèi),點(diǎn)(a,b)與點(diǎn)(b,a)表示同一個(gè)點(diǎn);②要了解一批電視機(jī)的使用壽命,從中任意抽取40臺(tái)電視機(jī)進(jìn)行試驗(yàn),在這個(gè)問(wèn)題中,樣本容量是40臺(tái)電視機(jī);③過(guò)一點(diǎn)有且只有一條直線與這條直線平行;④如果a<b,那么a c < b c;其中真命題有(    )
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011•廣州)已知?ABCD的周長(zhǎng)為32,AB=4,則BC=( 。
A.4B.12
C.24D.28

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011內(nèi)蒙古赤峰,25,14分)如圖(圖1、圖2),四邊形ABCD是邊長(zhǎng)為4的正方形,點(diǎn)E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點(diǎn)F,F(xiàn)N⊥BC,交BC的延長(zhǎng)線于點(diǎn)N。
(1)若點(diǎn)E是BC的中點(diǎn)(如圖1),AE與EF相等嗎?為什么?
(2)點(diǎn)E在BC間運(yùn)動(dòng)時(shí)(如圖2),設(shè)BE=x,△ECF的面積為y。
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x取何值時(shí),y有最大值,并求出這個(gè)最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(11·臺(tái)州)在梯形ABCD中,AD∥BC,∠ABC=90º,對(duì)角線AC、BD相交于
點(diǎn)O.下列條件中,不能判斷對(duì)角線互相垂直的是【   】
A.∠1=∠2          B.∠1=∠3
C.∠2=∠3          D.OB2+OC2=BC2

查看答案和解析>>

同步練習(xí)冊(cè)答案