如圖,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉n度后得到△EDC,此時點D在AB邊上,斜邊DE交AC邊于點F,則n的大小和圖中陰影部分的面積分別為( )

A.30,2
B.60,2
C.60,
D.60,
【答案】分析:先根據(jù)已知條件求出AC的長及∠B的度數(shù),再根據(jù)圖形旋轉的性質及等邊三角形的判定定理判斷出△BCD的形狀,進而得出∠DCF的度數(shù),由直角三角形的性質可判斷出DF是△ABC的中位線,由三角形的面積公式即可得出結論.
解答:解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,
∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,
∵△EDC是△ABC旋轉而成,
∴BC=CD=BD=AB=2,
∵∠B=60°,
∴△BCD是等邊三角形,
∴∠BCD=60°,
∴∠DCF=30°,∠DFC=90°,即DE⊥AC,
∴DE∥BC,
∵BD=AB=2,
∴DF是△ABC的中位線,
∴DF=BC=×2=1,CF=AC=×2=
∴S陰影=DF×CF=×=
故選C.
點評:本題考查的是圖形旋轉的性質及直角三角形的性質、三角形中位線定理及三角形的面積公式,熟知圖形旋轉的性質是解答此題的關鍵,即:
①對應點到旋轉中心的距離相等;
②對應點與旋轉中心所連線段的夾角等于旋轉角;
③旋轉前、后的圖形全等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案