【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在BC、CD上移動(dòng),但A到EF的距離AH始終保持與AB長相等,問在E、F移動(dòng)過程中:
(1)∠EAF的大小是否有變化?請(qǐng)說明理由.
(2)△ECF的周長是否有變化?請(qǐng)說明理由.
【答案】
(1)解:∠EAF的大小沒有變化.理由如下:
根據(jù)題意,知
AB=AH,∠B=90°,
又∵AH⊥EF,
∴∠AHE=90°,
∵AE=AE,
∴Rt△BAE≌Rt△HAE(HL),
∴∠BAE=∠HAE,
同理,△HAF≌△DAF,
∴∠HAF=∠DAF,
∴∠EAF=∠EAH+∠FAH= ∠BAH+ ∠HAD= (∠BAH+∠HAD)= ∠BAD,
又∵∠BAD=90°,
∴∠EAF=45°,
∴∠EAF的大小沒有變化.
(2)解:△ECF的周長沒有變化.理由如下:
∵由(1)知,Rt△BAE≌Rt△HAE,△HAF≌△DAF,
∴BE=HE,HF=DF,
∴C△EFC=EF+EC+FC=EB+DF+EC+FC=2BC,
∴△ECF的周長沒有變化.
【解析】(1)根據(jù)題意,求證△BAE≌△HAE,△HAF≌△DAF,然后根據(jù)全等三角形的性質(zhì)求∠EAF= ∠BAD.(2)根據(jù)(1)的求證結(jié)果,用等量代換來計(jì)算△ECF的周長,如果結(jié)果是定量,就說明△ECF的周長沒有變化,反之,△ECF的周長有變化.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________ .
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只螞蟻從點(diǎn)A沿?cái)?shù)軸向右直爬2個(gè)單位到達(dá)點(diǎn)B,點(diǎn)A表示﹣ ,設(shè)點(diǎn)B所表示的數(shù)為m.
(1)求m的值;
(2)求|m﹣1|+(m+6)0的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張背面相同的紙牌A、B、C、D其正面分別畫有正三角形、圓、平行四邊形、正五邊形,某同學(xué)把這四張牌背面向上洗勻后摸出一張,放回洗勻再摸出一張.
(1)請(qǐng)用樹狀圖或表格表示出摸出的兩張牌所有可能的結(jié)果;
(2)求摸出兩張牌的牌面圖形都是中心對(duì)稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明和爸爸在400米的環(huán)形跑道上騎車鍛煉,他們?cè)谕坏攸c(diǎn)沿著同一方向同時(shí)出發(fā),騎行結(jié)束后兩人有如下對(duì)話:
(1)他們的對(duì)話內(nèi)容,求小明和爸爸的騎行速度,
(2)一次追上小明后,在第二次相遇前,再經(jīng)過多少分鐘,小明和爸爸相距50m?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,O為AC中點(diǎn),EF過O點(diǎn)且EF⊥AC分別交DC于F,交AB于點(diǎn)E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,則下列結(jié)論正確的個(gè)數(shù)為( )
(1)DC=3OG; (2)OG= BC; ( 3)OGE是等邊三角形; ( 4)SAOE= S矩形ABCD
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖,在Rt△ABC中,∠ACB=90°∠BAC=30°.
動(dòng)手操作:(1)若以直角邊AC所在的直線為對(duì)稱軸.將Rt△ABC作軸對(duì)稱變換,請(qǐng)你在原圖上作出它的對(duì)稱圖形:
觀察發(fā)現(xiàn):(2)Rt△ABC和它的對(duì)稱圖形組成了什么圖形?你最準(zhǔn)確的判斷是 .
合作交流:(3)根據(jù)上面的圖形,請(qǐng)你猜想直角邊BC與斜邊AB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:分別與x軸、y軸交于點(diǎn)B、C,且與直線l2:交于點(diǎn)A.
(1)求出點(diǎn)A的坐標(biāo)
(2)若D是線段OA上的點(diǎn),且△COD的面積為12,求直線CD的解析式
(3)在(2)的條件下,設(shè)P是射線CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com