【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點得到第一個正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點得到第二個正方形A2B2C2D2…,以此類推,則第六個正方形A6B6C6D6周長是 .
【答案】.
【解析】
試題分析:根據(jù)題意,利用中位線定理可證明順次連接正方形ABCD四邊中點得正方形A1B1C1D1的面積為正方形ABCD面積的一半,根據(jù)面積關(guān)系可得周長關(guān)系,以此類推可得正方形A6B6C6D6 的周長.
解:順次連接正方形ABCD四邊的中點得正方形A1B1C1D1,則得正方形A1B1C1D1的面積為正方形ABCD面積的一半,即,則周長是原來的;
順次連接正方形A1B1C1D1中點得正方形A2B2C2D2,則正方形A2B2C2D2的面積為正方形A1B1C1D1面積的一半,即,則周長是原來的;
順次連接正方形A2B2C2D2得正方形A3B3C3D3,則正方形A3B3C3D3的面積為正方形A2B2C2D2面積的一半,即,則周長是原來的;
順次連接正方形A3B3C3D3中點得正方形A4B4C4D4,則正方形A4B4C4D4的面積為正方形A3B3C3D3面積的一半,則周長是原來的;
…
故第n個正方形周長是原來的,
以此類推:第六個正方形A6B6C6D6周長是原來的,
∵正方形ABCD的邊長為1,
∴周長為4,
∴第六個正方形A6B6C6D6周長是.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別在邊BC、AC上,連接AD、DE,且∠1=∠B=∠C.
(1)由題設(shè)條件,請寫出三個正確結(jié)論:(要求不再添加其他字母和輔助線,找結(jié)論過程中添加的字母和輔助線不能出現(xiàn)在結(jié)論中,不必證明)
答:結(jié)論一: ;
結(jié)論二: ;
結(jié)論三: .
(2)若∠B=45°,BC=2,當(dāng)點D在BC上運動時(點D不與B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此時BD的長.
(注意:在第(2)的求解過程中,若有運用(1)中得出的結(jié)論,須加以證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將圓心角都是90°的扇形OAB和扇形OCD疊放在一起,連接AC、BD.
(1)將△AOC經(jīng)過怎樣的圖形變換可以得到△BOD?
(2)若的長為πcm,OD=3cm,求圖中陰影部分的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點在AD邊上以每秒1cm的速度從A向D運動,點Q在BC邊上,以每秒4cm的速度從C點出發(fā),在CB間往返運動,二點同時出發(fā),待P點到達(dá)D點為止,在這段時間內(nèi),線段PQ有( )次平行于AB.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,G是CD上一點,延長BC到E,使CE=CG,連接BG并延長交DE于F.
(1)求證:△BCG≌△DCE;
(2)將△DCE繞點D順時針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓。).
(1)用直尺和圓規(guī)作出所在圓的圓心O;(要求保留作圖痕跡,不寫作法)
(2)若的中點C到弦AB的距離為20m,AB=80m,求所在圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=2x2+2向右平移1個單位后所得拋物線的解析式是( )
A.y=2x2+3
B.y=2x2+1
C.y=2(x+1)2+2
D.y=2(x﹣1)2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形具有而平行四邊形不一定具有的性質(zhì)是( )
A.兩組對邊分別平行
B.兩組對角分別相等
C.對角線互相平分
D.對角線互相垂直
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com