精英家教網(wǎng)如圖,坐標(biāo)平面內(nèi)有兩個點A和B其中點A的坐標(biāo)為(x1,y1),點B的坐標(biāo)為(x2,y2),求AB的中點C的坐標(biāo).
分析:過點C作CM⊥x軸于點M,過點A作AN⊥x軸于點N,過點B作BP⊥x軸于點P,用點A、B的橫坐標(biāo)表示出點C的橫坐標(biāo),同理用點A、B的縱坐標(biāo)表示出點C的縱坐標(biāo),即可得解.
解答:精英家教網(wǎng)解:過點C作CM⊥x軸于點M,過點A作AN⊥x軸于點N,過點B作BP⊥x軸于點P,
則點P的坐標(biāo)為(x2,0),點N的坐標(biāo)為(x1,0)
由探究的結(jié)論可知,MN=MP,
∴點M的坐標(biāo)為(
x1+
x
 
2
2
,0),
∴點C的橫坐標(biāo)為
x1+
x
 
2
2

同理可求點C的縱坐標(biāo)為
y1+y2
2

∴點C的坐標(biāo)為(
x1+
x
 
2
2
,
y1+y2
2
).
故答案為:(
x1+
x
 
2
2
,
y1+y2
2
).
點評:本題考查了坐標(biāo)與圖形的性質(zhì),線段的中點坐標(biāo)公式,熟記中點坐標(biāo)對今后的學(xué)習(xí)非常重要,需要熟記.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF
精英家教網(wǎng)
知識應(yīng)用:如圖,坐標(biāo)平面內(nèi)有兩個點A和B其中點A的坐標(biāo)為(x1,y1),點B的坐標(biāo)為(x2,y2),求AB的中點C的坐標(biāo).
精英家教網(wǎng)
知識拓展:在上圖中,點A的坐標(biāo)為(4,5),點B的坐標(biāo)為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF

知識應(yīng)用:如圖,坐標(biāo)平面內(nèi)有兩個點A和B其中點A的坐標(biāo)為(x1,y1),點B的坐標(biāo)為(x2,y2),求AB的中點C的坐標(biāo).

知識拓展:在上圖中,點A的坐標(biāo)為(4,5),點B的坐標(biāo)為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年黃岡教育陽江培訓(xùn)中心中考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF

知識應(yīng)用:如圖,坐標(biāo)平面內(nèi)有兩個點A和B其中點A的坐標(biāo)為(x1,y1),點B的坐標(biāo)為(x2,y2),求AB的中點C的坐標(biāo).

知識拓展:在上圖中,點A的坐標(biāo)為(4,5),點B的坐標(biāo)為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省濰坊市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF

知識應(yīng)用:如圖,坐標(biāo)平面內(nèi)有兩個點A和B其中點A的坐標(biāo)為(x1,y1),點B的坐標(biāo)為(x2,y2),求AB的中點C的坐標(biāo).

知識拓展:在上圖中,點A的坐標(biāo)為(4,5),點B的坐標(biāo)為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案