已知反比例函數(shù)y=
k
x
圖象過第二象限內(nèi)的點(diǎn)A(-2,m)AB⊥x軸于B,Rt△AOB面積為3.
(1)求k和m的值;
(2)若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,-
3
2
).
①求直線y=ax+b的關(guān)系式;
②據(jù)圖象寫出使反比例函數(shù)y=
k
x
的值大于一次函數(shù) y=ax+b的值的x的取值范圍.
分析:(1)根據(jù)A坐標(biāo)求出OB的長(zhǎng),由直角三角形AOB的面積求出AB的長(zhǎng),確定出A坐標(biāo)得到m的值,代入反比例解析式求出k的值即可;
(2)①將C坐標(biāo)代入反比例解析式求出n的值,確定出C坐標(biāo),將A與C坐標(biāo)代入一次函數(shù)解析式求出a與b的值,即可確定出一次函數(shù)解析式;
②根據(jù)兩函數(shù)交點(diǎn)A與C的橫坐標(biāo),利用函數(shù)圖象即可求出所求x的范圍.
解答:解:(1)∵A(-2,m),即AO=2,Rt△AOB面積為3,
∴AB=3,
∴A(-2,3),m=3;
將A坐標(biāo)代入反比例解析式得:k=-6;
(2)①將C(n,-
3
2
)代入反比例解析式得:n=4,即C(4,-
3
2
),
將A與C坐標(biāo)代入一次函數(shù)y=ax+b中,得:
-2a+b=3
4a+b=-
3
2

解得:
a=-
3
4
b=
3
2
,
∴一次函數(shù)解析式為y=-
3
4
x+
3
2

②由A、C的橫坐標(biāo)分別為-2和4,
利用圖象得:反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍為-2<x<0或x>4.
點(diǎn)評(píng):此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,涉及的知識(shí)有:待定系數(shù)法求函數(shù)解析式,坐標(biāo)與圖形性質(zhì),一次函數(shù)與坐標(biāo)軸的交點(diǎn),利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
k
x
圖象過第二象限內(nèi)的點(diǎn)A(-2,m)AB⊥x軸于B,Rt△AOB精英家教網(wǎng)面積為3,若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,-
3
2
),
(1)反比例函數(shù)的解析式為
 
,m=
 
,n=
 
;
(2)求直線y=ax+b的解析式;
(3)在y軸上是否存在一點(diǎn)P,使△PAO為等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
kx
的圖象經(jīng)過點(diǎn)A(-2,3),求這個(gè)反比例函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
kx
的圖象經(jīng)過點(diǎn)(3,-4),則這個(gè)函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知反比例函數(shù)y1=
k
x
和二次函數(shù)y2=-x2+bx+c的圖象都過點(diǎn)A(-1,2)
(1)求k的值及b、c的數(shù)量關(guān)系式(用c的代數(shù)式表示b);
(2)若兩函數(shù)的圖象除公共點(diǎn)A外,另外還有兩個(gè)公共點(diǎn)B(m,1)、C(1,n),試在如圖所示的直角坐標(biāo)系中畫出這兩個(gè)函數(shù)的圖象,并利用圖象回答,x為何值時(shí),y1<y2;
(3)當(dāng)c值滿足什么條件時(shí),函數(shù)y2=-x2+bx+c在x≤-
1
2
的范圍內(nèi)隨x的增大而增大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
kx
(k<0)的圖象上有兩點(diǎn)A(x1,y1)、B(x2,y2),且有x1<x2<0,則y1和y2的大小關(guān)系是
y1<y2
y1<y2

查看答案和解析>>

同步練習(xí)冊(cè)答案