如圖,在由邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)畫AD∥BC(D為格點),連接CD;
(2)線段CD的長為
5
5
,AC的長為
2
5
2
5
;
(3)請你在△ACD的三個內(nèi)角中任選一個銳角,若你所選的銳角是
∠CAD
∠CAD
,則它所對應的正弦函數(shù)值是
5
5
5
5
;
(4)若E為BC中點,F(xiàn)為AD中點.則tan∠CAE的值是
1
2
1
2
,四邊形AECF的形狀為
菱形
菱形
,面積為
5
5
分析:(1)根據(jù)B到A是向右2格向上1個,所以從點C向右2格向上1格,即為點D所在的格點位置;
(2)根據(jù)網(wǎng)格結構以及勾股定理列式進行計算即可求解;
(3)根據(jù)勾股定理求出AD的長度,然后根據(jù)勾股定理逆定理判定△ACD是直角三角形,然后選擇一個角,再根據(jù)正弦定義解答;
(4)利用網(wǎng)格結構,根據(jù)正切定義列式進行計算即可求解,根據(jù)圖形可以判定四邊形AECF是平行四邊形,然后證明AE=AF,從而得到四邊形AECF是菱形,求出CF的長,以及CF邊上的高,然后根據(jù)菱形的面積公式列式計算即可.
解答:解:(1)如圖所示;

(2)CD=
12+22
=
5

AC=
42+22
=2
5
;

(3)選∠CAD,則∵AD=
42+32
=5,
∴CD2+AC2=(
5
2+(2
5
2=25=AD2
∴△ACD是直角三角形,
∴若選∠CAD,則sin∠CAD=
CD
AD
=
5
5
,
若選∠ADC,則sin∠ADC=
AC
AD
=
2
5
5
;

(4)tan∠CAE=
2
4
=
1
2

根據(jù)圖形,四邊形ABCD是平行四邊形,
∵E為BC中點,F(xiàn)為AD中點,
∴AF∥CE且AF=CE,
∴四邊形AECF是平行四邊形,
又∵CF=
1
2
AD=AF=
5
2
(直角三角形斜邊上的中線等于斜邊的一半),
∴平行四邊形AECF是菱形,
∴S=
5
2
×2=5.
點評:本題考查了復雜作圖,勾股定理,勾股定理逆定理,以及解直角三角形,熟悉網(wǎng)格結構準確作出圖形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,在由邊長為1的小正方形組成的方格紙中,有兩個全等的三角形,即△A1B1C1和△A2B2C2
(1)請你指出在方格紙內(nèi)如何運用平移、旋轉變換,將△A1B1C1重合到△A2B2C2上;
(2)在方格紙中將△A1B1C1經(jīng)過怎樣的變換后可以與△A2B2C2成中心對稱圖形,畫出變換后的三角形并標出對稱中心.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在由邊長為1的小正方形組成的網(wǎng)格中,點A、B、C、D、E都在小正方形的頂點上,求tan∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•阜新)如圖,在由邊長為1的小正方形組成的網(wǎng)格中,三角形ABC的頂點均落在格點上.
(1)將△ABC繞點O順時針旋轉90°后,得到△A1B1C1.在網(wǎng)格中畫出△A1B1C1
(2)求線段OA在旋轉過程中掃過的圖形面積;(結果保留π)
(3)求∠BCC1的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在由邊長為1的小正方形組成的方格紙中,有兩個全等的三角形,即△A1B1C1和△A2B2C2.請你指出在方格紙內(nèi)如何運用平移、旋轉變換,將△A1B1C1重合到△A2B2C2上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在由邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)線段BC的長為
5
5
,△ABC的面積為
5
5

(2)畫線段AP(P為格點),使AP=BC(畫出所有可能情形).
(3)試說明:∠BAC=90°.

查看答案和解析>>

同步練習冊答案