【題目】如圖1,已知在平面直角坐標(biāo)系中,四邊形是矩形點(diǎn)分別在軸和軸的正半軸上,連結(jié),,,是的中點(diǎn).
(1)求OC的長(zhǎng)和點(diǎn)的坐標(biāo);
(2)如圖2,是線段上的點(diǎn),,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),經(jīng)過三點(diǎn)的拋物線交軸的正半軸于點(diǎn),連結(jié)交于點(diǎn)
①將沿所在的直線翻折,若點(diǎn)恰好落在上,求此時(shí)的長(zhǎng)和點(diǎn)的坐標(biāo);
②以線段為邊,在所在直線的右上方作等邊,當(dāng)動(dòng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)也隨之運(yùn)動(dòng),請(qǐng)直接寫出點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng).
【答案】(1) OC=,點(diǎn)的坐標(biāo)為;(2) ①點(diǎn)的坐標(biāo)為,②.
【解析】
(1)由OA=3,tan∠OAC=,得OC= ,由四邊形OABC是矩形,得BC=OA=3,所以CD= BC= ,求得D();
(2)①由易知得ACB=∠OAC=30°,設(shè)將△DBF沿DE所在的直線翻折后,點(diǎn)B恰好落在AC上的B'處,則DB'=DB=DC,∠BDF=∠B'DF,所以∠BDB'=60°,∠BDF=∠B'DF=30°,所以BF=BDtan30°=,AF=BF=,因?yàn)椤?/span>BFD=∠AEF,所以∠B=∠FAE=90°,因此△BFD≌△AFE,AE=BD=,點(diǎn)E的坐標(biāo)( ,0);
②動(dòng)點(diǎn)P在點(diǎn)O時(shí),求得此時(shí)拋物線解析式為y=,因此E(,0),直線DE: ,F1(3,);當(dāng)動(dòng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)M時(shí),求得此時(shí)拋物線解析式為,所以E(6,0),直線DE:
,所以F2(3,);所以點(diǎn)F運(yùn)動(dòng)路徑的長(zhǎng)為,即G運(yùn)動(dòng)路徑的長(zhǎng)為 .
(1) ∵,
∴.
∵四邊形是矩形,
∴.
∵是的中點(diǎn),
∴,
∴點(diǎn)的坐標(biāo)為.
(2) ①∵,
∴,
∴.
設(shè)將翻折后,點(diǎn)落在上的處,
則,
∴,
∴,
∴.
∵,
∴.
∵,
∴,
∵,
∴.
∴.
∴,∴點(diǎn)的坐標(biāo)為.
②動(dòng)點(diǎn)P在點(diǎn)O時(shí),
∵拋物線過點(diǎn)P(0,0)、
求得此時(shí)拋物線解析式為y=
∴E(,0),
∴直線DE: ,
∴F1(3,);
當(dāng)動(dòng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)M時(shí),
∵拋物線過點(diǎn)
求得此時(shí)拋物線解析式為,
∴E(6,0),
∴直線DE:y=-
∴F2(3,)
∴點(diǎn)F運(yùn)動(dòng)路徑的長(zhǎng)為,
∵△DFG為等邊三角形,
∴G運(yùn)動(dòng)路徑的長(zhǎng)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】扶貧工作小組對(duì)果農(nóng)進(jìn)行精準(zhǔn)扶貧,幫助果農(nóng)將一種有機(jī)生態(tài)水果拓寬了市場(chǎng).與去年相比,今年這種水果的產(chǎn)量增加了1000千克,每千克的平均批發(fā)價(jià)比去年降低了1元,批發(fā)銷售總額比去年增加了.
(1)已知去年這種水果批發(fā)銷售總額為10萬元,求這種水果今年每千克的平均批發(fā)價(jià)是多少元?
(2)某水果店從果農(nóng)處直接批發(fā),專營(yíng)這種水果.調(diào)查發(fā)現(xiàn),若每千克的平均銷售價(jià)為41元,則每天可售出300千克;若每千克的平均銷售價(jià)每降低3元,每天可多賣出180千克,設(shè)水果店一天的利潤(rùn)為元,當(dāng)每千克的平均銷售價(jià)為多少元時(shí),該水果店一天的利潤(rùn)最大,最大利潤(rùn)是多少?(利潤(rùn)計(jì)算時(shí),其它費(fèi)用忽略不計(jì).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長(zhǎng)”的活動(dòng),并計(jì)劃購(gòu)置一批圖書,購(gòu)書前,對(duì)學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請(qǐng)你估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書知識(shí)競(jìng)賽,九年級(jí)1班要在本班3名優(yōu)勝者(2男1女)中隨機(jī)選送2人參賽,請(qǐng)用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,點(diǎn)在邊上,,.點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)半徑為6的圓與的一邊相切時(shí),的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是非零實(shí)數(shù),,在同一平面直角坐標(biāo)系中,二次函數(shù)與一次函數(shù)的大致圖象不可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】箭頭四角形,模型規(guī)律:如圖1,延長(zhǎng)CO交AB于點(diǎn)D,則.因?yàn)榘妓倪呅?/span>ABOC形似箭頭,其四角具有“”這個(gè)規(guī)律,所以我們把這個(gè)模型叫做“箭頭四角形”.模型應(yīng)用:
(1)直接應(yīng)用:
①如圖2, .
②如圖3,的2等分線(即角平分線)交于點(diǎn)F,已知,則
③如圖4,分別為的2019等分線.它們的交點(diǎn)從上到下依次為.已知,則 度
(2)拓展應(yīng)用:如圖5,在四邊形ABCD中,.O是四邊形ABCD內(nèi)一點(diǎn),且.求證:四邊形OBCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形OAB中,點(diǎn)C是弧AB上任意一點(diǎn)(不與點(diǎn)A,B重合),CD∥OA交OB于點(diǎn)D,點(diǎn)I是△OCD的內(nèi)心,連結(jié)OI,BI.若∠AOB=β,則∠OIB等于( )
A. 180°βB. 180°-βC. 90°+ βD. 90°+β
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形中,∥,,直線.當(dāng)直線沿射線方向,從點(diǎn)開始向右平移時(shí),直線與四邊形的邊分別相交于點(diǎn)、.設(shè)直線向右平移的距離為,線段的長(zhǎng)為,且與的函數(shù)關(guān)系如圖2所示,則四邊形的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過點(diǎn)(2,3),對(duì)稱軸為直線x =1.
(1)求拋物線的表達(dá)式;
(2)如果垂直于y軸的直線l與拋物線交于兩點(diǎn)A(, ),B(, ),其中, ,與y軸交于點(diǎn)C,求BCAC的值;
(3)將拋物線向上或向下平移,使新拋物線的頂點(diǎn)落在x軸上,原拋物線上一點(diǎn)P平移后對(duì)應(yīng)點(diǎn)為點(diǎn)Q,如果OP=OQ,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com