一條拋物線以y軸為對(duì)稱軸,頂點(diǎn)在原點(diǎn),且過點(diǎn)(3,2),求這條拋物線的解析式.

解:設(shè)拋物線的解析式為y=ax2

   ∵拋物線經(jīng)過(3,2),

∴9a=4,∴a=

這條拋物線的解析式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

暑假期間,北關(guān)中學(xué)對(duì)網(wǎng)球場(chǎng)進(jìn)行了翻修,在水平地面點(diǎn)A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線路是一條拋物線(如圖所示),在地面上落點(diǎn)為B.有同學(xué)在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球精英家教網(wǎng)的體積和圓柱形桶的厚度忽略不計(jì)),以M點(diǎn)為頂點(diǎn),拋物線對(duì)稱軸為y軸,水平地面為x軸建立平面直角坐標(biāo)系.
(1)請(qǐng)求出拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶多少個(gè)時(shí),網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐一應(yīng)用——探究的過程:

  (1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m.隧道頂部最高處距地面6.25m,并畫出了隧道截面圖.建立了如圖②所示的直角坐標(biāo)系.請(qǐng)你求出拋物線的解析式.

  (2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全.問該隧道能否讓最寬3m.最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?

  (3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型塑.提出了以下兩個(gè)問題,請(qǐng)予解答:

Ⅰ.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上.頂點(diǎn)A、B落在x軸上.設(shè)矩形ABCD的周長(zhǎng)為,求的最大值。

Ⅱ.如圖④,過原點(diǎn)作一條的直線OM,交拋物線于點(diǎn)M.交拋物線對(duì)稱軸于點(diǎn)N,P為直線OM上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q。問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖南省岳陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請(qǐng)予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長(zhǎng)為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對(duì)稱軸于點(diǎn)N,P 為直線0M上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案