【題目】如圖,點為定點,定直線是上一動點,點分別為的中點,對于下列各值:①線段的長;②的周長;③的面積;④的大。渲须S點的移動不會變化的是( )
A.①②B.①③C.①④D.②④
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線()與直線相交于點P(2,m),與x軸交于點A.
(1)求m的值;
(2)過點P作PB⊥x軸于B,如果△PAB的面積為6,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B(3,3)在雙曲線 (x>0)上,點D在雙曲線 (x<0)上,點A和點C分別在x軸,y軸的正半軸上,且點A,B,C,D構成的四邊形為正方形.
(1)求k的值;
(3)求點A的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在菱形 ABCD 中,∠ABC=60°,M、N 分別是邊 BC,CD 上的兩個動點,∠MAN=60°,AM、AN 分別交 BD 于 E、F 兩點.
(1)如圖 1,求證:CM+CN=BC;
(2)如圖 2,過點 E 作 EG∥AN 交 DC 延長線于點 G,求證:EG=EA;
(3)如圖 3,若 AB=1,∠AED=45°,直接寫出 EF 的長.
(4)如圖 3,若 AB=1,直接寫出BE+AE的最小值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD為△ABC的角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點O.(1)求證:AD垂直平分EF;
(2)若∠BAC=,寫出DO與AD之間的數量關系,不需證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點A、C,與AB交于點D.
(1)求拋物線的函數解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果拋物線C1的頂點在拋物線C2上,同時,拋物線C2的頂點在拋物線C1上,那么,我們稱拋物線C1與C2關聯(lián).
(1)已知兩條拋物線①:y=x2+2x﹣1,②:y=﹣x2+2x+1,判斷這兩條拋物線是否關聯(lián),并說明理由;
(2)拋物線C1:y=(x+1)2﹣2,動點P的坐標為(t,2),將拋物線C1繞點P(t,2)旋轉180°得到拋物線C2,若拋物線C2與C1關聯(lián),求拋物線C2的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2+bx+c與x軸交于點A(-3,0)、B(1,0),C為頂點,直線y=x+m經過點A,與y軸交于點D.
(1)求b、c的值;
(2)求∠DAO的度數和線段AD的長;
(3)平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′,若新拋物線經過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數表達式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com