在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等邊三角形DEF從初始位置(點E與點B重合,EF落在BC上,如圖1所示)在線段BC上沿BC方向以每秒1個單位的速度平移,DE、DF分別與AB相交于點M、N,當點F運動到點C時,△DEF終止運動,此時點D恰好落在AB上,設△DEF平移的時間為x。
(1)求△DEF的邊長;
(2)求M點、N點在BA上的移動速度;
(3)在△DEF開始運動的同時,如果點P以每秒2個單位的速度從D點出發(fā)沿DE·EF運動,最終運動到F點.若設△PMN的面積為y,求y與x的函數(shù)關系式,寫出它的定義域;并說明當P點在何處時,△PMN的面積最大?

解:(1)當F點與C點重合時,如圖1所示:
∵△DEF為等邊三角形,
∴∠DFE=60°,
∵∠B=30°,
∴∠BDF=90°,
∴FD=BC=3;
(2)過E點作EG⊥AB,
∵∠DEF=60°,∠B=30°,
∴∠BME=30°,
∴EB=EM,
在Rt△EBG中,BG=x×cos30°=x,
∴BM=2BG=x,
∴M點在BA上的移動速度為,F(xiàn)點作FH⊥F1D1,
在Rt△FF1H中,F(xiàn)H=x×cos30°=x,
點N在BA上的移動速度為;
(3)在Rt△DMN中,DM=3-x,MN=(3-x)×cos30°=(3-x),
當P點運動到M點時,有2x+x=3,
∴x=1
①當P點在DM之間運動時,過P點作PP1⊥AB,垂足為P1在Rt△PMP1中,PM=3-x-2x=3-3x,
∴PP1=(3-3x)=(1-x),
∴y與x的函數(shù)關系式為:y=(0≤x≤1),
②當P點在ME之間運動時,過P點作PP2⊥AB,垂足為P2,
在Rt△PMP2中,PM=x-(3-2x)=3(x-1),
∴PP1=(1-x),
∴y與x的函數(shù)關系式為:,
③當P點在EF之間運動時,過P點作PP3⊥AB,垂足為P3,
在Rt△PMP3中,PB=x+(2x-3)=3(x-1),
∴PP3=(x-1),
∴y與x的函數(shù)關系式為:,
∴y=,
∴當x=2時,y最大=,而當P點在D點時,,
,
∴當P點在D點時,△PMN的面積最大。


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習冊答案