【題目】如圖,若四邊形、四邊形都是正方形,顯然圖中有,;

當(dāng)正方形旋轉(zhuǎn)到如圖的位置時(shí),是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;

當(dāng)正方形旋轉(zhuǎn)到如圖的位置時(shí),延長(zhǎng),交

求證:;

當(dāng),時(shí),求的長(zhǎng).

【答案】成立.證明見解析;(2)證明見解析,.

【解析】

(1)利用SAS△ADG≌△CDE即可;
(2)①同樣先證明△ADG≌△CDE,得出∠DAG=∠DCE,而∠DCM+∠DMC=90°,從而∠DAG+∠AMH=90°,結(jié)論顯然;
連接AC、CG,注意到DG∥AC,△GAC△DAC的面積相等,于是考慮用等積變換,求出AG即可求出CH.

成立.

證明:四邊形、四邊形是正方形,

,,

類似可得,

,

,

連接,交,連接,

由題意有

,

,,∴,

為底邊的的高為,(延長(zhǎng)畫高)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△PDC⊙O的內(nèi)接三角形,CP=CD,若將△PCD繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C剛落在⊙O上的A處時(shí),停止旋轉(zhuǎn),此時(shí)點(diǎn)D落在點(diǎn)B處.

(1)求證:PB⊙O相切;

(2)當(dāng)PD=2,∠DPC=30°時(shí),求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩城相距600千米,甲、乙兩車同時(shí)從A城出發(fā)駛向B城,甲車到達(dá)B城后立即返回.如圖是它們離A城的距離y(千米)與行駛時(shí)間 x(小時(shí))之間的函數(shù)圖象.

(1)求甲車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;

(2)當(dāng)它們行駛了7小時(shí)時(shí),兩車相遇,求乙車速度及乙車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;

(3)當(dāng)兩車相距100千米時(shí),求甲車行駛的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形紙片中,,點(diǎn)是邊上的一點(diǎn),將紙片沿折疊,點(diǎn)落在處,恰好經(jīng)過的中點(diǎn),則的度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)?jiān)谙铝袡M線上注明理由.

如圖,在中,點(diǎn),在邊上,點(diǎn)在線段上,若,,點(diǎn)的距離相等.求證:點(diǎn)的距離相等.

證明:∵(已知),

______),

______),

(已知),

______),

∵點(diǎn)的距離相等(已知),

的角平分線(______),

(角平分線的定義),

______),

平分(角平分線的定義),

∴點(diǎn)的距離相等(______).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6如圖,在建立了平面直角坐標(biāo)系的正方形網(wǎng)格中,A2,2,B1,0,C3,1

1畫出ΔABC關(guān)于x軸對(duì)稱的ΔA1B1C1

2畫出將ΔABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)900,所得的ΔA2B2C2

3直接寫出A2點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(3,6)、B(9,一3),以原點(diǎn)O為位似中心,相似比為,把ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10B=30°,O是線段AB上的一個(gè)動(dòng)點(diǎn),以O為圓心,OB為半徑作⊙OBC于點(diǎn)D,過點(diǎn)D作直線AC的垂線,垂足為E

1)求證:DE是⊙O的切線;

2)設(shè)OB=x,求∠ODE的內(nèi)部與ABC重合部分的面積y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC BC=a,AC=b,AB=c,記三角形 ABC 的面積為 S.

(1)求證:S=absinC;

(2)求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案