【題目】如圖,正方形ABCD,動點E在AC上,AF⊥AC,垂足為A,AF=AE.
(1)求證:BF=DE;
(2)當點E運動到AC中點時(其他條件都保持不變),問四邊形AFBE是什么特殊四邊形?說明理由.

【答案】
(1)證明:∵正方形ABCD,

∴AB=AD,∠BAD=90°,

∵AF⊥AC,

∴∠EAF=90°,

∴∠BAF=∠EAD,

在△ADE和△ABF中

∴△ADE≌△ABF(SAS),

∴BF=DE


(2)解:當點E運動到AC的中點時四邊形AFBE是正方形,

理由:∵點E運動到AC的中點,AB=BC,

∴BE⊥AC,BE=AE= AC,

∵AF=AE,

∴BE=AF=AE,

又∵BE⊥AC,∠FAE=∠BEC=90°,

∴BE∥AF,

∵BE=AF,

∴得平行四邊形AFBE,

∵∠FAE=90°,AF=AE,

∴四邊形AFBE是正方形.


【解析】(1)根據正方形的性質判定△ADE≌△ABF后即可得到BF=DE;(2)利用正方形的判定方法判定四邊形AFBE為正方形即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分9分)為了維護海洋權益,新組建的國家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域。如圖所示,AB=60海里,在B處測得C在北偏東45的方向上,A處測得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測得AD=120海里。

(1)(4分)分別求出A與C及B與C的距離AC,BC(結果保留根號)

(2)(5分)已知在燈塔D周圍100海里范圍內有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無觸礁的危險?(參考數(shù)據:=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,B=90°,分別以A、C為圓心,大于AC長為半徑畫弧,兩弧相交于點M、N,連結MN,與AC、BC分別交于點D、E,連結AE,則:

(1)ADE= ;

(2)AE EC;(填=”“

(3)當AB=3,AC=5時,ABE的周長=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,ABC=90°

(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標明字母)

①作線段AC的垂直平分線l,交AC于點O;

②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;

③連接DA、DC

(2)判斷四邊形ABCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEBF,AC平分BAE,交BF于C.

(1)尺規(guī)作圖:過點B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);

(2)在(1)的圖形中,找出兩條相等的線段,并予以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小學學生較多,為了便于學生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)

(2)請用列表或樹狀圖的方法,求出小張同學該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】適合下列條件的△ABC中,直角三角形的個數(shù)為( ) ①a= ,b= ,c=
②a=6,∠A=45°;
③∠A=32°,∠B=58°;
④a=7,b=24,c=25.
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程(x1)(x2)0的兩個根為x1,x2,且x1x2,則x12x2_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是形內一點,若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別為6、7、8,四邊形DHOG面積為(
A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習冊答案