【題目】如圖,已知AB是⊙O的弦,AC是⊙O的直徑,D為⊙O上一點,過D作⊙O的切線交BA的延長線于P,且DP⊥BP于P.若PD+PA=6,AB=6,則⊙O的直徑AC的長為( )

A. 5 B. 8 C. 10 D. 12

【答案】C

【解析】分析:通過切線的性質表示出EC的長度,用相似三角形的性質表示出OE的長度,由已知條件表示出OC的長度即可通過勾股定理求出結果.

詳解:如圖:連接BC,并連接ODBC于點E:

∵DPBP,AC為直徑;

∴∠DPB=∠PBC=90°.

∴PD∥BC,PD為⊙O的切線.

∴∠PDE=90°=∠DEB,

∴四邊形PDEB為矩形,

∴AB∥OE,且OAC中點,AB=6.

∴PD=BE=EC.

∴OE=AB=3.

PA=x,則OD=DE-OE=6+x-3=3+x=OC,EC=PD=6-x.

.Rt△OEC:

,

即:,解得x=2.

所以AC=2OC=2×(3+x)=10.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c經過A-30)、B10)、C0,3)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點Py軸的垂線,垂足點為E,連接AE

1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

2)如果P點的坐標為(x,y),△PAE的面積為S,求Sx之間的函數(shù)關系式,直接寫出自變量x的取值范圍,并求出S的最大值;

3)在(2)的條件下,當S取到最大值時,過點Px軸的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為點P′,求出P′的坐標,并判斷P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD,∠A=60°,AB=6,點E,F(xiàn)分別是AB,BC邊上沿某一方向運動的點,且DE=DF,當點E從A運動到B時,線段EF的中點O運動的路程為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題:

垂直于同一直線的兩條直線互相平行;的平方根是;若一個角的兩邊與另一個角的兩邊互相垂直,且其中一個角是45°,則另一個角為45°或135°;④若的整數(shù)部分,是不等式的最大整數(shù)解,則關于方程的自然數(shù)解共有3對;⑤在平面直角坐標系中,點A、B的坐標分別為(2,0),(0,1),將線段AB平移至,的位置,則.其中真命題的個數(shù)是(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)部某一玩具價格如圖所示,現(xiàn)有甲、乙兩個商店,計劃在“六一”兒童節(jié)前到該批發(fā)部購買此類玩具.兩商店所需玩具總數(shù)為120個,乙商店所需數(shù)量不超過50個,設甲商店購買個.如果甲、乙兩商店分別購買玩具,兩商店需付款總和為y元.

(1)求y關于的函數(shù)關系式,并寫出自變量的取值范圍;

(2)若甲商店購買不超過100個,請說明甲、乙兩商店聯(lián)合購買比分別購買最多可節(jié)約多少錢;

(3)“六一”兒童節(jié)之后,該批發(fā)部對此玩具價格作了如下調整:數(shù)量不超過100個時,價格不變;數(shù)量超過100個時,每個玩具降價a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學庫存若干套桌椅,準備修理后支援貧困山區(qū)學!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨修完這些桌椅比乙單獨修完多用20天,學校每天付甲組80元修理費,付乙組120元修理費。

(1)該中學庫存多少套桌椅?

(2)在修理過程中,學校要派一名工人進行質量監(jiān)督,學校負擔他每天10元生活補助費,現(xiàn)有三種修理方案:a、由甲單獨修理;b、由乙單獨修理;c、甲、乙合作同時修理。你認為哪種方案省時又省錢?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=-x2 +bx+c交y軸于點C(0,2),經過點Q(2,2).直線y=x+4分別交x軸、y軸于點B、A.

(1)直接填寫拋物線的解析式________

(2)如圖1,點P為拋物線上一動點(不與點C重合),PO交拋物線于M,PC交AB于N,連MN.

求證:MN∥y軸;

(3)如圖,2,過點A的直線交拋物線于D、E,QD、QE分別交y軸于G、H.求證:CG CH為定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE.已知∠BAC=30°,EEAB,垂足為F,連接DF;

求證:(1)AC=EF

(2)四邊形ADFE是平行四邊形;

(3)ACDF;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內倡導光盤行動,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

(1)這次被調查的同學共有  ;

(2)補全條形統(tǒng)計圖,并在圖上標明相應的數(shù)據;

(3)校學生會通過數(shù)據分析,估計這次被調查的所有學生一餐浪費的食物可以供50人食用一餐據此估算,該校18 000名學生一餐浪費的食物可供多少人食用一餐

查看答案和解析>>

同步練習冊答案