【題目】已知如圖1,P為正方形ABCD的邊BC上任意一點,BE⊥AP于點E,在AP的延長線上取點F,使EF=AE,連接BF,∠CBF的平分線交AF于點G.

(1)求證:BF=BC;

(2)求證:△BEG是等腰直角三角形;

(3)如圖2,若正方形ABCD的邊長為4,連接CG,當P點為BC的中點時,求CG的長.

【答案】(1)證明見解析;92)證明見解析;(3)

【解析】(1)利用線段的垂直平分線的性質(zhì)以及正方形的性質(zhì)即可證明;

(2)想辦法證明∠F=∠BAF=∠EBP,由∠EBG=∠EBP+∠PBG,∠EGB=∠F+∠GBF,即可解決問題;

(3)求出BG,只要證明△EBP≌△GCP,即可推出CG=BE,由此即可解決問題.

解:(1)證明:∵BE⊥AP,AE=EF,

∴BE垂直平分線段AF,

∴AB=BF,

在正方形ABCD中,AB=BC,

∴BF=BC;

(2)證明:∵四邊形ABCD是正方形,

∴∠ABC=90°,

∴∠ABE+∠EBP=90°,

∵BE⊥AF,

∴∠ABE+∠BAP=90°,

∴∠BAP=∠EBP,

∵AB=BF∴∠BAP=∠BFP,

∴∠EBP=∠BFP,

∵∠CBF的平分線交AF于點G,

∴∠CBG=∠FBG,

∴∠EBP+∠CBG=∠BFP+∠FBG,

∴∠EBG=∠EGB,

∵BE⊥AF,

∴△BEG是等腰直角三角形.

(3)解:∵P是BC的中點,正方形的邊長為4,

∴AB=4,BP=CP=2,

∵在Rt△ABP中,

∴AP=,

∵BE⊥AP,

∴S△ABP=,

解得:BE=,

∵AB=BC,AB=BF,

∴BC=BF,

由(1)可知∠CBG =∠FBG,

∴BG=BG,

∴△CBG≌△FBG,

∴∠BFP=∠BCG,

由(2)可知∠EBP=∠BFP,

∴∠EBP =∠BCG∵∠EPB =∠CPG,

∴△EBP≌△GCP,

∴CG=BE=

“點睛”本題考查正方形到現(xiàn)在、全等三角形的判定和性質(zhì)、相等的垂直平分線的性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考壓軸題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解方程x2+4x﹣1=0時,原方程應變形為( 。

A. (x+2)2=5 B. (x+2)2=3 C. (x﹣2)2=3 D. (x﹣2)2=5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列簡寫的全等三角形的判定定理中,與角沒有關系的是(

A.SSSB.HLC.AASD.SAS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2bxc過點A(30),B(1,0),交y軸于點C,點P是該拋物線上一動點,點PC點沿拋物線向A點運動(P不與點A重合),過點PPDy軸交直線AC于點D.

(1)求拋物線的解析式;

(2)求點P在運動的過程中線段PD長度的最大值;

(3)在拋物線對稱軸上是否存在點M,使|MAMC|最大?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學參加古詩詞大賽活動,五次比賽成績的平均分都是85分,如果甲比賽成績的方差為S2=16.7,乙比賽成績的方差為S2=28.3,那么成績比較穩(wěn)定的是_____(填甲或乙)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系內(nèi)(O為坐標原點),點A在x軸上,點C在y軸上,點B的坐標為(﹣4,﹣4),點E是BC的中點,現(xiàn)將矩形折疊,折痕為EF,點F為折痕與y軸的交點,EF交x軸于G且使∠CEF=60°.

(1)求證:△EFC≌△GFO;

(2)求點D的坐標;

(3)若點P(x,y)是線段EG上的一點,設△PAF的面積為s,求s與x的函數(shù)關系式并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】樣本數(shù)據(jù)32,4,a,8的平均數(shù)是4,則這組數(shù)據(jù)的眾數(shù)是( 。

A. 2 B. 3 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年某市約有108000名應屆初中畢業(yè)生參加中考,按四舍五入保留兩位有效數(shù)字,108000用科學計數(shù)法表示為( )

(A)0.10×106 (B)1.08×105 (C)0.11×106 (D)1.1×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ab=3ab = 5,則10a2bab2=__________.

查看答案和解析>>

同步練習冊答案