如圖,過點(diǎn)A(1,0)的直線與y軸平行,且分別與正比例函數(shù)y=k1x,y=k2x和反比例y=
k3x
在第一象限相交,則k1、k2、k3的大小關(guān)系是
k2>k3>k1
k2>k3>k1
分析:分別把x=1代入三個函數(shù)關(guān)系式分別得到當(dāng)x=1時的縱坐標(biāo),再在圖象上表示出三個縱坐標(biāo)的位置,即可比較出k1、k2、k3的大小關(guān)系.
解答:解:分別把x=1代入三個函數(shù)關(guān)系式分別得到當(dāng)x=1時的縱坐標(biāo):
y=k2,y=k3,y=k1
結(jié)合圖象可以看出:k2>k3>k1,
故答案為:k2>k3>k1
點(diǎn)評:此題主要考查了正比例函數(shù)與反比例函數(shù)圖象,關(guān)鍵是掌握凡是圖象經(jīng)過的點(diǎn)必能滿足解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,過點(diǎn)P畫出射線PM,PN,使PM∥OA,PN∥OB,且射線PM和射線OA,射線PN和射線OB方向分別相同,量一量∠O和∠P,你能得到什么結(jié)論?如果射線PM和射線OA,射線PN和射線OB一組方向相同、另一組方向相反,∠O和∠P又有什么關(guān)系呢?如果兩組方向都相反,∠O和∠P有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,A(a,0),B(0,b),且a、b滿足b=
a2-4
+
4-a2
+16
a+2

(1)求直線AB的解析式;
(2)若點(diǎn)M為直線y=mx在第一象限上一點(diǎn),且△ABM是等腰直角三角形,求m的值.
(3)如圖3過點(diǎn)A的直線y=kx-2k交y軸負(fù)半軸于點(diǎn)P,N點(diǎn)的橫坐標(biāo)為-1,過N點(diǎn)的直線y=
k
2
x-
k
2
交AP于點(diǎn)M,給出兩個結(jié)論:①
PM+PN
NM
的值是不變;②
PM-PN
AM
的值是不變,只有一個結(jié)論是正確,請你判斷出正確的結(jié)論,并加以證明和求出其值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,過點(diǎn)O、A(1,0)、B(0,
3
)作⊙M,D為⊙M上不同于點(diǎn)O、A的一點(diǎn),則∠ODA的度數(shù)為( 。
A、60°
B、60°或120°
C、30°
D、30°或150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,過點(diǎn)P(2,
2
)作x軸的平行線交y軸于點(diǎn)A,交雙曲線y=
k
x
(x>0)于點(diǎn)N,作PM⊥AN交雙曲線y=
k
x
(x>0)于點(diǎn)M,連接AM.已知PN=4.
(1)求k的值;
(2)設(shè)直線MN解析式為y=ax+b,求不等式
k
x
≥ax+b的解集.

查看答案和解析>>

同步練習(xí)冊答案