精英家教網(wǎng)已知:如圖,在⊙O中,弦CD垂直直徑AB,垂足為M,AB=4,CD=2
3
,點E在AB的延長線上,且tanE=
3
3
.求證:DE是⊙O的切線.
分析:連接OD.根據(jù)垂徑定理,得DM=
1
2
CD
=
3
,在直角三角形ODM和直角三角形DME中,利用銳角三角函數(shù)分別求得∠DOM和∠E的度數(shù),從而求得∠ODE的度數(shù),即可證明DE是圓的切線.
解答:精英家教網(wǎng)證明:連接OD.
∵弦CD⊥直徑AB,AB=4,CD=2
3
,
∴MD=
1
2
CD
=
3
,OD=
1
2
AB
=2.
在Rt△OMD中,
∵sin∠DOM=
MD
OD
=
3
2
,
∴∠DOM=60°.
在Rt△DME中,
tanE=
3
3
,
∴∠E=30°.
∴∠ODE=90°.
又∵OD是⊙O的半徑,
∴DE是⊙O的切線.
點評:此題綜合運用了垂徑定理、銳角三角函數(shù)和切線的判定定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖,在?ABCD中,對角線AC交BD于點O,四邊形AODE是平行四邊形.求證:四邊形ABOE、四邊形DCOE都是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知:如圖,在△ABC中,AB=AC,點D,E在邊BC上,且BD=CE.
(1)找出圖中所有的互相全等的三角形;
(2)求證:∠ADE=AED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計算:(
2
-1)-1+
8
-6sin45°+(-1)2011

(2)先化簡,再求值:
x2-2xy+y2
x2-xy
÷(
x
y
-
y
x
)
,其中x=
2
-1,y=1

(3)如圖,已知:如圖,在?ABCD中,BE=DF.求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在△ABC中,AB=AC,點P是△ABC的中線AD上的任意一點(不與點A重合.將線段AP繞點A逆時針旋轉(zhuǎn)到AQ,使∠PAQ=∠BAC,連接BP,CQ
(1)求證:BP=CQ.
(2)設(shè)直線BP與直線CQ相交于點E,∠BAC=α,∠BEC=β,
①若點P在線段AD上移動(不與點A重合),則“α與β之間有怎樣的數(shù)量關(guān)系?并說明理由.
②若點P在直線AD上移動(不與點A重合).則α與β之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•密云縣一模)已知:如圖,在△ABC中,∠A=∠B=30°,D是AB 邊上一點,以AD為直徑作⊙O恰過點C.
(1)求證:BC所在直線是⊙O的切線;
(2)若AD=2
3
,求弦AC的長.

查看答案和解析>>

同步練習(xí)冊答案