【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),則經(jīng)過 后,點(diǎn)P與點(diǎn)Q第一次在△ABC的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
【答案】(1)見解析;(2)經(jīng)過24秒點(diǎn)P與點(diǎn)Q第一次在邊AC上相遇.
【解析】
試題分析:(1)①根據(jù)時(shí)間和速度分別求得兩個(gè)三角形中BP、CQ和BD、PC邊的長,根據(jù)SAS判定兩個(gè)三角形全等.
②根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×時(shí)間公式,先求得點(diǎn)P運(yùn)動(dòng)的時(shí)間,再求得點(diǎn)Q的運(yùn)動(dòng)速度;
(2)根據(jù)題意結(jié)合圖形分析發(fā)現(xiàn):由于點(diǎn)Q的速度快,且在點(diǎn)P的前邊,所以要想第一次相遇,則應(yīng)該比點(diǎn)P多走等腰三角形的兩個(gè)邊長.
解:(1)①全等,理由如下:
∵t=1秒,
∴BP=CQ=1×1=1厘米,
∵AB=6cm,點(diǎn)D為AB的中點(diǎn),
∴BD=3cm.
又∵PC=BC﹣BP,BC=4cm,
∴PC=4﹣1=3cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
∴△BPD≌△CQP;
②假設(shè)△BPD≌△CQP,
∵vP≠vQ,
∴BP≠CQ,
又∵△BPD≌△CQP,∠B=∠C,則BP=CP=2,BD=CQ=3,
∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t==2秒,
∴vQ===1.5cm/s;
(2)設(shè)經(jīng)過x秒后點(diǎn)P與點(diǎn)Q第一次相遇,
由題意,得 1.5x=x+2×6,
解得x=24,
∴點(diǎn)P共運(yùn)動(dòng)了24s×1cm/s=24cm.
∵24=2×12,
∴點(diǎn)P、點(diǎn)Q在AC邊上相遇,
∴經(jīng)過24秒點(diǎn)P與點(diǎn)Q第一次在邊AC上相遇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級近期實(shí)行小班教學(xué),若每間教室安排20名學(xué)生,則缺少3間教室;若每間教室安排24名學(xué)生,則空出一間教室.問這所學(xué)校共有教室多少間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,已知點(diǎn)P是反比例函數(shù)圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運(yùn)動(dòng)到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí):
①求出點(diǎn)A,B,C的坐標(biāo).
②在P點(diǎn)右側(cè)的反比例函數(shù)圖像是否存在上點(diǎn)M,使△MBP的面積等于菱形ABCP面積.若存在,試求出滿足條件的M點(diǎn)的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三只乒乓球上,分別寫有三個(gè)不同的正整數(shù)(用a、b、c表示),三只乒乓球除標(biāo)的數(shù)字不同外,其余都相同,將三只乒乓球放在一個(gè)不透明的盒中攪拌均勻,無放回的從中依次摸出2只乒乓球,將球上面的數(shù)字相加求和.當(dāng)和為偶數(shù)時(shí),記為事件A,當(dāng)和為奇數(shù)時(shí),記為事件B.
(1)設(shè)計(jì)一組a、b、c的值,使得事件A為必然發(fā)生的事件.
(2)設(shè)計(jì)一組a、b、c的值,使得事件B發(fā)生的概率大于事件A發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把-6-(+7)+(-2)-(-9)寫成省略加號和的形式后的式子是( )
A. -6-7+2-9 B. -6-7-2+9 C. -6+7-2-9 D. -6+7-2+9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操場上有一根豎直立在地面上的旗桿,繩子自然下垂到地面還剩余2米,當(dāng)把繩子拉開8米后,繩子剛好斜著拉直下端接觸地面(如圖①)
(1)請根據(jù)你的閱讀理解,將題目的條件補(bǔ)充完整:如圖②,Rt△ABC中 ∠C=90°,BC=8米,____________________________.求AC的長.
(2)根據(jù)(1)中的條件,求出旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與小剛規(guī)定了一種新運(yùn)算△:a△b=3a﹣2b.小明計(jì)算出2△5=﹣4,請你幫小剛計(jì)算2△(﹣5)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假將至,某商場為了吸引顧客,設(shè)計(jì)了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖所示,轉(zhuǎn)盤被均勻地分為20份),并規(guī)定:顧客每 200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.若某顧客購物300元.
(1)求他此時(shí)獲得購物券的概率是多少?
(2)他獲得哪種購物券的概率最大?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在¨ABCD中,過點(diǎn)D作DE⊥AB與點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com