聯(lián)想三角形外心的概念,我們可引入如下概念:定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.
舉例:如圖1,若PA=PB,則點(diǎn)P為△ABC的準(zhǔn)外心.
(1)應(yīng)用:如圖2,CD為等邊三角形ABC的高,準(zhǔn)外心P在高CD上,且PD=,求∠APB的度數(shù).
(2)探究:如圖3,已知△ABC為直角三角形,斜邊BC=5,AB=3,準(zhǔn)外心P在AC邊上,試探究PA的長(zhǎng).
(1)90°;(2)PA=2或PA=.

試題分析:(1)連接PA、PB,根據(jù)準(zhǔn)外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況利用等邊三角形的性質(zhì)求出PD與AB的關(guān)系,然后判斷出只有情況③是合適的,再根據(jù)等腰直角三角形的性質(zhì)求出∠APB=45°,然后即可求出∠APB的度數(shù);
(2)先根據(jù)勾股定理求出AC的長(zhǎng)度,根據(jù)準(zhǔn)外心的定義,分①PB=PC,②PA=PC,③PA=PB三種情況,根據(jù)三角形的性質(zhì)計(jì)算即可得解.
試題解析:(1)∵CD是等邊三角形ABC的高
∴∠ADC=∠BDC=90°,AD=BD
∵PD=AB
∴PD=AD=BD
又∵∠ADC=∠BDC=90°
∴∠APD=∠BPD=45°
∴∠APB=90°
(2)∵△ABC為直角三角形,斜邊BC=5,AB=3
∴AC=4.
①若PA=PB,在Rt△ABC中不可能,排除;
②若PA=PC則PA=2;
③若PB=PC,連接PB,設(shè)PA=x,則PB=PC=4-x
在Rt△ABP中有,即
解得:, 即PA=
綜上所述:PA=2或PA=
考點(diǎn): 1.線段垂直平分線的性質(zhì);2.等邊三角形的性質(zhì);3.等腰直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明、小亮兩個(gè)同學(xué)對(duì)于等腰三角形都很感興趣,小明說:“我知道有一種等腰三角形,過它的頂點(diǎn)作一條直線可以將原來的等腰三角形分成兩個(gè)等腰三角形,”小亮說:“你才知道一種!我知道好幾種呢!”聰明的你知道幾種呢?(要求畫出圖形,標(biāo)明角度,不要求證明,請(qǐng)注意有好幾種情況喲)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC中,∠B="90" º,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

(1)出發(fā)2秒后,求PQ的長(zhǎng);
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間(只要直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,折疊長(zhǎng)方形的一邊,使點(diǎn)落在邊上的點(diǎn)處, cm,cm,

求:(1)的長(zhǎng);(2)的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將一個(gè)大三角形剪成一個(gè)梯形及一個(gè)小三角形,若小三角形的長(zhǎng)分別為8、10、16,則剪出的梯形各邊長(zhǎng)不可能是(    ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC的面積為1cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為  (    )
A.0.4cm2B.0.5cm2C.0.6cm2D.0.7cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠AOE=∠BOE=22.5°,EF∥OB,EC⊥OB,若EC=1,則EF=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,點(diǎn)E是AC上的點(diǎn),且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,則AE等于(  )
A.3 cmB.cmC.6 cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠BAC=90º,AB=15,AC=20,AD⊥BC,垂足為D,則△ABC斜邊上的高AD=   

查看答案和解析>>

同步練習(xí)冊(cè)答案