【題目】“表格”為初三(1)班全部 43 名同學某次數(shù)學測驗成績的統(tǒng)計結果,則下列說法正確的是( 。
成績(分) | 70 | 80 | 90 |
男生(人) | 5 | 10 | 7 |
女生(人) | 4 | 13 | 4 |
A. 男生的平均成績小于女生的平均成績 B. 男生成績的中位數(shù)大于女生成績的中位數(shù)
C. 男生的平均成績大于女生的平均成績 D. 男生成績的中位數(shù)小于女生成績的中位數(shù)
【答案】C
【解析】
根據(jù)平均數(shù)的定義分別求出男生與女生的平均成績,再根據(jù)中位數(shù)的定義分別求出男生與女生成績的中位數(shù)即可求解.
解:∵男生的平均成績是:(70×5+80×10+90×7)÷22=1780÷22=80 ,
女生的平均成績是:(70×4+80×13+90×4)÷21=1680÷21=80,
∴男生的平均成績大于女生的平均成績.
∵男生一共22人,位于中間的兩個數(shù)都是80,所以中位數(shù)是(80+80)÷2=80,
女生一共21人,位于最中間的一個數(shù)是80,所以中位數(shù)是80,
∴男生成績的中位數(shù)等于女生成績的中位數(shù).
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據(jù)調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調查中,喜歡籃球項目的同學有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學校有800名學生,估計全校學生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器商場銷售進價分別為120元、190元的兩種型號的電風扇,如下表所示是近二周的銷售情況(進價、售價均保持不變,利潤銷售收入進貨成本):
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
種型號 | 種型號 | ||
第一周 | 5 | 6 | 2310 |
第二周 | 8 | 9 | 3540 |
(1)求兩種型號的電風扇的銷售單價;
(2)若商場再購進這兩種型號的電風扇共120臺,并且全部銷售完,該商場能否實現(xiàn)這兩批電風扇的總利潤為8240元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,O為坐標原點,已知直線經過點A(-6,0),它與y軸交于點B,點B在y軸正半軸上,且OA=2OB
(1)求直線的函數(shù)解析式
(2)若直線也經過點A(-6,0),且與y軸交于點C,如果ΔABC的面積為6,求C點的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①、圖②均是5×6的正方形網格,每個小正方形的頂點稱為格點,小正方形的邊長為1,點A、E、F均在格點上.在圖①、圖②中,只用無刻度的直尺,在給定的網格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫出畫法.
(1)在圖①中畫一個正方形ABCD,使其面積為5.
(2)在圖②中畫一個等腰△EFG,使EF為其底邊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某貨運公司有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨29噸,2輛大貨車與6輛小貨車一次可以運貨31噸.
(1)1輛大貨車和1輛小貨車一次可以分別運貨多少噸?
(2)有46.4噸貨物需要運輸,貨運公司擬安排大小貨車共10輛(要求兩種貨車都要用),全部貨物一次運完,其中每輛大貨車一次運貨花費500元,每輛小貨車一次運貨花費300元,請問貨運公司應如何安排車輛最節(jié)省費用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為4,點E,F分別在AD,DC上,AE=DF=1,BE與AF相交于點G,點H為BF的中點,連接GH,則GH的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)在如圖所示的平面直角坐標系中表示下面各點:
A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);
(2)A點到原點的距離是 .
(3)將點C向x軸的負方向平移6個單位,它與點 重合.
(4)連接CE,則直線CE與y軸是什么位置關系?
(5)點D分別到x、y軸的距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,動點P從點A出發(fā)以每秒1個單位的速度沿AB向點B運動(點P不與點A,B重合),動點Q從點B出發(fā)以每秒2個單位的速度沿BC向點C運動,點P,Q同時出發(fā),當點Q停止運動,點P也隨之停止.連接AQ,交BD于點E,連接PE.設點P運動時間為x秒,求當x為何值時,△PBE≌△QBE.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com