【題目】如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AF交CD于點G.
(1)猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論;
(2)若AB=3,AD=4,求線段GC的長.
【答案】
(1)解:GF=GC.
理由如下:連接GE,
∵E是BC的中點,
∴BE=EC,
∵△ABE沿AE折疊后得到△AFE,
∴BE=EF,
∴EF=EC,
∵在矩形ABCD中,
∴∠C=90°,
∴∠EFG=90°,
∵在Rt△GFE和Rt△GCE中,
,
∴Rt△GFE≌Rt△GCE(HL),
∴GF=GC;
(2)解:設(shè)GC=x,則AG=3+x,DG=3﹣x,
在Rt△ADG中,42+(3﹣x)2=(3+x)2,
解得x= .
【解析】(1) GF=GC,理由如下:連接GE, 由中點定義折疊的性質(zhì)得出EF=EC,由矩形的性質(zhì)得出∠C=90°,∠EFG=90°,從而利用HL證出Rt△GFE≌Rt△GCE,根據(jù)全等三角形對應(yīng)邊相等得出結(jié)論;
(2)設(shè)GC=x,則AG=3+x,DG=3﹣x,在Rt△ADG中根據(jù)勾股定理列出方程求解即可。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E、F分別BC、AD邊上,AE=BF,AE與BF交于G,ED與CF交于H.求證:
(1)GH∥BC;
(2)GH= AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,E,F(xiàn),C在一條直線上,若將△DEC的邊EC沿AC方向平移,平移過程中始終滿足下列條件:AE=CF,DE⊥AC于點E,BF⊥AC于點F,且AB=CD.則當點E,F(xiàn)不重合時,BD與EF的關(guān)系是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一種西裝和領(lǐng)帶,西裝每套定價200元,領(lǐng)帶每條定價40元.國慶節(jié)期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案:
方案一:買一套西裝送一條領(lǐng)帶;
方案二:西裝和領(lǐng)帶都按定價的90%付款.
現(xiàn)某客戶要到該商場購買西裝20套,領(lǐng)帶x.
(1)若該客戶按方案一購買,需付款多少元(用含x的式子表示)?若該客戶按方案二購買,需付款多少元(用含x的式子表示)?
(2)若,通過計算說明此時按哪種方案購買較為合算;
(3)當時,你能給出一種更為省錢的購買方法嗎?試寫出你的購買方法和所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中, , , ,D是AB邊的中點,E是AC邊上一點,聯(lián)結(jié)DE,過點D作交BC邊于點F,聯(lián)結(jié)EF.
(1)如圖1,當時,求EF的長;
(2)如圖2,當點E在AC邊上移動時, 的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;
(3)如圖3,聯(lián)結(jié)CD交EF于點Q,當是等腰三角形時,請直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌A、B、C、D,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用A、B、C、D表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點O,EF過點O且與AB、CD分別相交于點E、F,連接EC.
(1)求證:OE=OF;
(2)若EF⊥AC,△BEC的周長是10,求ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代換),
∴DB∥EC( ),
∴∠DBC+∠C=1800(兩直線平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代換),
∴DF∥AC( ,兩直線平行),
∴∠A=∠F( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com