【題目】“2018雙十一購物狂歡節(jié)”,京東商城當(dāng)天的交易額約1600億元.“預(yù)計在2020雙十一購物狂歡節(jié)”京東商城當(dāng)天的交易額能達(dá)到約1936億元.
(1)求出2018至2020年京東商城雙十一當(dāng)天的交易額的年平均增長率;
(2)劉老師在“雙十一”到來之前,分別在京東商城的兩家店里選了一套標(biāo)價為1900元的書籍和一件標(biāo)價為990元的羽絨服.據(jù)了解,雙十一當(dāng)天書籍打五五折后再降價n%.同時,該羽絨服店的老板先將羽絨服提價n%,雙十一當(dāng)天再降價n%,最后劉老師雙十一購買兩種商品所花費(fèi)的總金額恰好是1760元.求n的值.
【答案】(1)10%;(2)
【解析】
(1)根據(jù)增長率問題的解法,列出方程,求解即可;
(2)根據(jù)打折方式,列出二元一次方程,解方程即可.
解:(1)設(shè)年平均增長率為x,
1600(1+x)2=1936,
解得:x1=0.1=10%,x2=﹣2.1(不合題意,舍去),
答:2018至2020年京東商城雙十一當(dāng)天的交易額的年平均增長率為10%;
(2)依題意,得:1900×0.55(1﹣n%)+990(1+n%)(1﹣n%)=1760,
設(shè)n%=y,整理,得:3y2+14y﹣5=0,
解得:y1=,y2=﹣5(不合題意,舍去),
∴n=.
答:n的值為=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司組織員工到附近的景點旅游,根據(jù)旅行社提供的收費(fèi)方案,繪制了如圖所示的圖象,圖中折線ABCD表示人均收費(fèi)y(元)與參加旅游的人數(shù)x(人)之間的函數(shù)關(guān)系.
(1)當(dāng)參加旅游的人數(shù)不超過10人時,人均收費(fèi)為 元;
(2)如果該公司支付給旅行社3600元,那么參加這次旅游的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1,再以正方形的對角線OA2作正方形OA1A2B1,…,依此規(guī)律,則點A2017的坐標(biāo)是( 。
A. (0,21008) B. (21008,21008) C. (21009,0) D. (21009,-21009)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶由于丘陵、山地的特殊地勢,被網(wǎng)友們稱為”3D魔幻城市”.在重慶,你有時會看到馬路上面是房屋、馬路下面也是房屋;你從底樓出來,看到門口是一條公路,等你坐電梯上到頂樓,發(fā)現(xiàn)還是公路.小王家就在這樣的一棟樓里:他從家里底樓出來會看到一條斜坡公路DC,已知∠DCE=30°,他從樓底B出發(fā),沿著公路到達(dá)C處后繼續(xù)沿著斜坡前進(jìn)到達(dá)D處,共走了27米,然后他又沿著斜坡DA前進(jìn)到達(dá)了頂樓A處,已知DA與水平線夾角為30°,大樓AB高米,假設(shè)BC、CD、AD、AB在同一平面內(nèi),則斜坡CD的長度約為( 。ㄒ阎≈1.73)
A.10.3B.10.4C.9D.9.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數(shù)y=ax2+bx+c的圖象交于y軸上一點B,該二次函數(shù)的頂點C在x軸上,且OC=2.
(1)求點B坐標(biāo);
(2)求二次函數(shù)y=ax2+bx+c的解析式;
(3)設(shè)一次函數(shù)y=x+m的圖象與二次函數(shù)y=ax2+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com