【題目】如圖1所示,OA是⊙O的半徑,點DOA上的一動點,過D作線段CDOA交⊙O于點F,過點C作⊙O的切線BC,B為切點,連接AB,交CD于點E.

(1)求證:CB=CE;

(2)如圖2,當點D運動到OA的中點時,CD剛好平分,求證:BCE是等邊三角形;

(3)如圖3,當點D運動到與點O重合時,若⊙O的半徑為2,且∠DCB=45°,求線段EF的長.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】(1)在圖1中,連接OB,根據(jù)切線的性質可得出∠OBC=90°,由OA=OB可得出∠DAE=∠OBA,根據(jù)等角的余角相等可得出∠DEA=∠CBE,再結合對頂角相等即可得出∠CEB=∠CBE,利用等角對等邊可證出CB=CE;
(2)在圖2中,連接OF,OB,在Rt△ODF中,由OF=2OD可得出∠DOF=60°,結合CD剛好平分,可得出∠AOB=2∠AOF=120°,再利用四邊形內(nèi)角和為360°可求出∠C=60°,結合CB=CE即可證出△BCE是等邊三角形;
(3)在圖3中,連接OB,則△OBC為等腰直角三角形,進而可求出OC的長度,結合(1)的結論可求出OE的長度,再根據(jù)EF=DF-OE即可求出線段EF的長.

證明:(1)在圖1中,連接OB

CB為⊙O的切線,切點為B,

OBBC,

∴∠OBC=90°

OA=OB,

∴∠DAE=OBA

∵∠DAE+DEA=90°,∠OBA+CBE=90°,

∴∠DEA=CBE

∵∠CEB=DEA,

∴∠CEB=CBE,

CB=CE

2)在圖2中,連接OFOB

RtODF中,OF=OA=2OD,

∴∠OFD=30°

∴∠DOF=60°

CD剛好平分,

∴∠AOB=2AOF=120°,

∴∠C=360°﹣∠ODC﹣∠OBC﹣∠AOB=60°

CB=CE,

∴△BCE是等邊三角形.

3)解:在圖3中,連接OB

∵∠OBC=90°,∠DCB=45°,

∴△OBC為等腰直角三角形,

BC=OB=2,OC=2

又∵CB=CE,

OE=OCCE=OCBC=22

EF=DFOE=2﹣(22=42

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四幅圖象分別表示變量之間的關系,請按圖象的順序,將下面的四種情境與之對應排序.正確的順序是( 。

籃球運動員投籃時,投出去的籃球的高度與時間的關系

去超市購買同一單價的水果,所付費用與水果數(shù)量的關系

李老師使用的是一種含月租的手機計費方式,則他每月所付話費與通話時間的關系

周末,小明從家到圖書館,看了一段時間書后,按原速度原路返回,小明離家的距離與時間的關系

A. ①②③④ B. ①③④② C. ①③②④ D. ①④②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,直至得C17.

(1)寫出點的坐標________

(2)若P(50,m)在第17段拋物線C17上,則m=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,DBC的中點,AC的垂直平分線分別交AC、AD、AB于點EF、G.

(1)F到△ABC的邊_______的距離相等,點F到△ABC的頂點______的距離相等.

(2)BC=6,AD=9,求AF的值.

(3)連接CGAD于點H,當∠BAC是多少度時,△FGH為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鹽城市初級中學為了緩解校門口的交通堵塞,倡導學生步行上學. 小麗步行從家去學校,圖中的線段表示小麗步行的路程s(米)與所用時間t(分鐘)之間的函數(shù)關系. 試根據(jù)函數(shù)圖像回答下列問題:

1)小麗家離學校 米;

2)小麗步行的速度是 /分鐘;

3)求出m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線y=x2﹣2x﹣3的圖象向上平移_____個單位,能使平移后的拋物線與x軸上兩交點以及頂點圍成等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AB,AC的垂直平分線交BC于點E,G,若∠B+C=70°,則∠EAG=___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校開展的數(shù)學活動課上,小明和小剛制作了一個正三樓錐(質量均勻,四個面完全相同),并在各個面上分別標記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;

(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結果.

(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列條件中:①中,能確△ABC是直角三角形的定條件有

A. ①② B. ③④ C. ①③④ D. ①②③

查看答案和解析>>

同步練習冊答案