如圖,已知二次函數(shù)y=ax2+2x+c(a>0)圖象的頂點M在反比例函數(shù)y=
3
x
精英家教網(wǎng),且與x軸交于AB兩點.
(1)若二次函數(shù)的對稱軸為x=-
1
2
,試求a,c的值;
(2)在(1)的條件下求AB的長;
(3)若二次函數(shù)的對稱軸與x軸的交點為N,當(dāng)NO+MN取最小值時,試求二次函數(shù)的解析式.
分析:(1)根據(jù)對稱軸x=-
b
2a
=-
1
2
,求得二次函數(shù)y=ax2+2x+c(a>0)中的a,再根據(jù)頂點在反比例函數(shù)y=
3
x
上,求出c即可;
(2)求得拋物線與x軸的交點坐標(biāo),再用點B的橫坐標(biāo)減去點A的橫坐標(biāo)即可.
(3)可用含有a的式子表示點M、N的坐標(biāo),即求出a的值,再求得解析式.
解答:解:(1)∵二次函數(shù)的對稱軸為x=-
1
2
,
∴-
2
2a
=-
1
2
,
解得a=2,
∵二次函數(shù)y=ax2+2x+c(a>0)圖象的頂點M在反比例函數(shù)y=
3
x
上,
∴頂點為(-
1
2
,c-
1
2
),
1
2
(c-
1
2
)=-3,
解得c=-
11
2

∴二次函數(shù)的解析式為y=2x2+2x-
11
2
;

(2)∵二次函數(shù)的解析式為y=2x2+2x-
11
2
;
∴令y=0,2x2+2x-
11
2
=0;
解得x=
-1±2
3
2

∴AB=
-1+2
3
2
-
-1- 2
3
2
=2
3


(3)根據(jù)對稱軸x=-
1
a
,當(dāng)x=-
1
a
時,y=-3a,
∴NO+MN=
1
a
+3a≥2
3a•
1
a
=2
3
,當(dāng)3a=
1
a
時NO+MN最小,
 即3a2=1時,a=
3
3
,
∴c=0,
∴此時二次函數(shù)的解析式為y=
3
3
x2+2x.
點評:本題是二次函數(shù)的綜合題,其中涉及到的知識點有最值問題和兩點之間的距離等知識點,是各地中考的熱點和難點,解題時注意數(shù)形結(jié)合等數(shù)學(xué)思想的運(yùn)用,同學(xué)們要加強(qiáng)訓(xùn)練,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標(biāo)為(
5
2
,
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標(biāo);若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標(biāo)為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時P點的坐標(biāo);如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標(biāo).
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案