【題目】如圖,四邊形ABCD為正方形,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(0,﹣2),反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,一次函數(shù)y=ax+b的圖象經(jīng)過A、C兩點(diǎn).

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求反比例函數(shù)與一次函數(shù)的另一個(gè)交點(diǎn)M的坐標(biāo);
(3)若點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).

【答案】
(1)

解:(1)∵點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(0,﹣2),

∴AB=1+2=3,

∵四邊形ABCD為正方形,

∴Bc=3,

∴C(3,﹣2),

把C(3,﹣2)代入y=得k=3×(﹣2)=﹣6,

∴反比例函數(shù)解析式為y=﹣,

把C(3,﹣2),A(0,1)代入y=ax+b得,解得

∴一次函數(shù)解析式為y=﹣x+1


(2)

解:解方程組,

∴M點(diǎn)的坐標(biāo)為(﹣2,3);


(3)

解:

設(shè)P(t,﹣),

∵△OAP的面積恰好等于正方形ABCD的面積,

×1×|t|=3×3,解得t=18或t=﹣18,

∴P點(diǎn)坐標(biāo)為(18,﹣)或(﹣18,


【解析】(1)先根據(jù)A點(diǎn)和B點(diǎn)坐標(biāo)得到正方形的邊長(zhǎng),則BC=3,于是可得到C(3,﹣2),然后利用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式;
(2)通過解關(guān)于反比例函數(shù)解析式與一次函數(shù)的解析式所組成的方程組可得到M點(diǎn)的坐標(biāo);
(3)設(shè)P(t,﹣),根據(jù)三角形面積公式和正方形面積公式得到×1×|t|=3×3,然后解絕對(duì)值方程求出t即可得到P點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線l1經(jīng)過原點(diǎn)與A點(diǎn),其頂點(diǎn)是P(﹣2,3),平行于y軸的直線m與x軸交于點(diǎn)B(b,0),與拋物線l1交于點(diǎn)M.

(1)點(diǎn)A的坐標(biāo)是;拋物線l1的解析式是;
(2)當(dāng)BM=3時(shí),求b的值;
(3)把拋物線l1繞點(diǎn)(0,1)旋轉(zhuǎn)180°,得到拋物線l2
①直接寫出當(dāng)兩條拋物線對(duì)應(yīng)的函數(shù)值y都隨著x的增大而減小時(shí),x的取值范圍;
(4)②直線m與拋物線l2交于點(diǎn)N,設(shè)線段MN的長(zhǎng)為n,求n與b的關(guān)系式,并求出線段MN的最小值與此時(shí)b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)以1厘米/秒的速度沿BC方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以2厘米/秒的速度沿CD方向運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

(1)求線段CD的長(zhǎng)。
(2)t為何值時(shí),線段PQ將四邊形ABCD的面積分為1:2兩部分?
(3)伴隨P,Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線為l.
①t為何值時(shí),l經(jīng)過點(diǎn)C?
②求當(dāng)l經(jīng)過點(diǎn)D時(shí)t的值,并求出此時(shí)刻線段PQ的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡(jiǎn),再求值:1﹣÷,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1: ,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)

A.30.6
B.32.1
C.37.9
D.39.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=

(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最大值與最小值的和是( 。

A.6
B.2 +1
C.9
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC中,∠ABC=45°,AH⊥BC于點(diǎn)H,點(diǎn)D在AH上,且DH=CH,連結(jié)BD.

(1)求證:BD=AC;
(2)將△BHD繞點(diǎn)H旋轉(zhuǎn),得到△EHF(點(diǎn)B,D分別與點(diǎn)E,F(xiàn)對(duì)應(yīng)),連接AE.
①如圖②,當(dāng)點(diǎn)F落在AC上時(shí),(F不與C重合),若BC=4,tanC=3,求AE的長(zhǎng);
②如圖③,當(dāng)△EHF是由△BHD繞點(diǎn)H逆時(shí)針旋轉(zhuǎn)30°得到時(shí),設(shè)射線CF與AE相交于點(diǎn)G,連接GH,試探究線段GH與EF之間滿足的等量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案