7、如圖.已知AB=DB,CB=EB,可以添加一個條件
∠1=∠2或∠ABC=∠DBE
后得出△
ABC
≌△
DBE
(SAS).從而使∠A=∠D.
分析:已知AB=DB,CB=EB,要利用“SAS”判斷三角形全等,只需要添加夾角相等的條件即可.
解答:證明:∵AB=DB,∠ABC=∠DBE,CB=EB,
∴△ABC≌△DBE(SAS).
故填:∠1=∠2或∠ABC=∠DBE;ABC;DBE.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

6、如圖,已知AB⊥DB,F(xiàn)D⊥CD,CF∥AE,BF=DE,下面結論不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥DB于B,CD⊥DB于D,AB=6,CD=4,BD=14,問:在DB上是否存在點P,使以C、D、P為頂點的三角形與以P、B、A為頂點的三角形相似?如果存在,求DP的長;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:已知AB⊥DB于B點,CD⊥DB于D點,AB=6,CD=4,BD=14,在DB上取一點P,使以C D P為頂點的三角形與以P B A為頂點的三角形相似,則DP的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年福建省廈門市廈門一中集美分校九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

如圖,已知AB⊥DB于B,CD⊥DB于D,AB=6,CD=4,BD=14,問:在DB上是否存在點P,使以C、D、P為頂點的三角形與以P、B、A為頂點的三角形相似?如果存在,求DP的長;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案