【題目】如圖,二次函數(shù)的圖象記為,它與x軸交于點O;將繞點旋轉(zhuǎn),交x軸于點;將繞點旋轉(zhuǎn),交x軸于點;……如此進(jìn)行下去,得到一條波浪線.若在這條波浪線上,則________

【答案】1

【解析】

求出拋物線與x軸的交點坐標(biāo),觀察圖形可知第奇數(shù)號拋物線都在x軸下方,然后判斷點P所在拋物線的位置,求出解析式然后把點P的坐標(biāo)代入計算即可.

解:令,則,

解得

∴圖像與x軸交點坐標(biāo)為:,

∵將繞點旋轉(zhuǎn),交x軸于點;

繞點旋轉(zhuǎn),交x軸于點;……

每隔4個單位長度圖形便會進(jìn)行重復(fù),如此進(jìn)行下去,

由2019÷4=504……3可知拋物線在x軸下方,

相當(dāng)于拋物線向右平移了4×505=2020個單位長度得到,

∴拋物線的解析式為

上,

故答案為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:為解方程(x2125x21+40,我們可以將x21視為一個整體,然后設(shè)x21y,則(x212y2,原方程化為y25y+40

解得y11y24

當(dāng)y1時,x211.∴x22.∴x±;

當(dāng)y4時,x214,∴x25,∴x±

∴原方程的解為x1,x2=﹣x3,x4=﹣

請利用以上知識解決下列問題:

如果(m2+n21)(m2+n2+2)=4,則m2+n2__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5AC4,E、F分別為AB、BC上的點,沿直線EF將∠B折疊,使點B恰好落在AC上的D處,當(dāng)△ADE恰好為直角三角形時,BE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,點是邊上一點,,連接.

1)沿翻折使點落在點處,

①連接,若,求的值;

②連接,若,求的取值范圍.

2繞點順時針旋轉(zhuǎn)得,點落在邊上時旋轉(zhuǎn)停止. 若點落在矩形對角線上,且點的距離小于時,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“陽光體育活動”促進(jìn)了學(xué)校體育活動的開展,小杰在一次鉛球比賽中,鉛球出手以后的軌跡是拋物線的一部分(如圖所示),已知鉛球出手時離地面1.6米,鉛球離投擲點3米時達(dá)到最高點,在離投擲點8米處落地,

(1)請求出此軌跡所在拋物線的關(guān)系式.

(2)設(shè)拋物線與X軸另一個交點是E,點Q是對稱軸上的一個動點,求當(dāng)△EBQ的周長最短時點Q的坐標(biāo).

(3)在拋物線上是否存在點G使得SDEG19.5,若存在請求出點G的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段,是線段上任意一點(不與點重合),分別以、為邊,在的同側(cè)作等邊,連接交于點,連接

當(dāng)時,試求的正切值;

若線段是線段的比例中項,試求這時的值;

記四邊形的面積為,當(dāng)在線段上運動時,是否成正比例,若成正比例,試求出比例系數(shù);若不成正比例,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019級即將迎來中考,很多家長都在為孩子準(zhǔn)備營養(yǎng)午餐.一家快餐店看準(zhǔn)了商機(jī),在55號推出了A,B,C三種營養(yǎng)套餐.套餐C單價比套餐A5元,三種套餐的單價均為整數(shù),其中A套餐比C套餐少賣12份,B套餐比C套餐少賣6份,且C套餐當(dāng)天賣出的數(shù)量大于26且不超過32,當(dāng)天總銷售量為偶數(shù)且當(dāng)天銷售額達(dá)到了1830元,商家發(fā)現(xiàn)C套餐很受歡迎,因此在6號加推出了C套餐升級版D套餐,四種套餐同時售賣,A套餐比5號銷售量減少,C套餐比5號銷售量增加,且A減少的份數(shù)比C套餐增加的份數(shù)多5份,B套餐銷售量不變,由于商家人手限制,兩天的總銷售量相同,則其他套餐單價不變的情況下,D套餐至少比C套餐費貴______時,才能使6號銷售額達(dá)到1950元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖4,在梯形ABCD中,AD∥BC,∠BCD=90°BC=2AD,FE分別是AB,BC的中點,則下列結(jié)論不一定正確的是( )

A.△ABC是等腰三角形B.四邊形EFAM是菱形

C.D.DE平分∠CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小涵和小西想要測量建筑物OP與廣告牌AB的高度.首先,小涵站在D處看到廣告牌AB的頂端A、建筑物OP的頂端O在一條直線上;然后,在陽光下,小西站在N處,此時他的影長為NE,同一時刻,測得建筑物OP的影長為PG,OPPD,ABPDCDPD,MNPD

1)請你畫出表示建筑物OP在陽光下的影子PG;

2)已知NE=1.92mPG=24m,BD=3m,建筑物OP與廣告牌AB之間的距離PB=8.1m,小涵的眼睛到地面的距離CD=1.5m,小西的身高MN=1.6m

①求出建筑物OP的高度;

②求出廣告牌AB的高度.

查看答案和解析>>

同步練習(xí)冊答案