【題目】為深化義務教育課程改革,某校積極開展拓展性課程建設,計劃開設藝術、體育、勞技、文學等多個類別的拓展性課程,要求每一位學生都自主選擇一個類別的拓展性課程.為了了解學生選擇拓展性課程的情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):
根據(jù)統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學生人數(shù).
(2)將條形統(tǒng)計圖補充完整.
(3)若該校共有1600名學生,請估計全校選擇體育類的學生人數(shù).

【答案】
(1)解:60÷30%=200(人),

即本次被調(diào)查的學生有200人


(2)解:選擇文學的學生有:200×15%=30(人),

選擇體育的學生有:200﹣24﹣60﹣30﹣16=70(人),

補全的條形統(tǒng)計圖如下圖所示,


(3)解:1600× (人)

即全校選擇體育類的學生有560人.


【解析】(1)根據(jù)條形統(tǒng)計圖和扇形統(tǒng)計圖可知選擇勞技的學生60人,占總體的30%,從而可以求得調(diào)查學生人數(shù);(2)根據(jù)文學的百分比和(1)中求得的學生調(diào)查數(shù)可以求得文學的有多少人,從而可以求得體育的多少人,進而可以將條形統(tǒng)計圖補充完整;(3)根據(jù)調(diào)查的選擇體育的學生所占的百分比可以估算出全校選擇體育類的學生人數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax2+bx+c(a≠0)經(jīng)過原點,頂點為A(h,k)(h≠0).
(1)當h=1,k=2時,求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經(jīng)過A點,求a與t之間的關系式;
(3)當點A在拋物線y=x2﹣x上,且﹣2≤h<1時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABCD中,ABC=60°,且AB=BC,MAN=60°.請?zhí)剿鰾M,DN與AB的數(shù)量關系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表記錄的是今年長江某一周內(nèi)的水位變化情況,這一周的上周末的水位已達到警戒水位米(正號表示水位比前一天上升,負號表示水位比前一天下降).

星期

水位

變化(米)

+0.2

-0.4

+0.3

(1)本周哪一天長江的水位最高?位于警戒水位之上還是之下?

(2)與上周周末相比,本周周末長江的水位是上升了還是下降了?并通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結(jié)MO、NO,以下四個結(jié)論:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正確的是( )

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠B=∠C,AD∥BC.

(1)證明:AD平分∠CAE;

(2)如果∠BAC=120°,求∠B的度數(shù).(不允許使用三角形內(nèi)角和為180°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,BCAF于點C,∠A+∠190°.

1)求證:ABDE

2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關系(不考慮點P與點A,DC重合的情況)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y= (k>0)的圖象上兩點A(x1, y1)和B(x2, y2),且x1x2>0,分別過A、Bx軸作AA1x軸于A1,BB1x軸于B1,則_________ (填“>”“=”或“<”),若=2,則函數(shù)解析式為_________.

查看答案和解析>>

同步練習冊答案