如圖所示,在等邊三角形ABC中,∠B、∠C的平分線交于點(diǎn)O,OB和OC的垂直平分線交BC于E、F,試探索BE、EF、FC的大小關(guān)系;并說明理由.
分析:根據(jù)角平分線的定義可得出∠OBE=∠OCF=30°,再根據(jù)OB和OC的垂直平分線交BC于E、F,得出∠OEF=∠OFE=60°,則三角形OEF為等邊三角形,測得出BE=EF=FC.
解答:解:結(jié)論:BE=EF=FC(1分)
理由是:∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°(2分),
∵OC,OB平分∠ACB,∠ABC,
∴∠OBE=∠OCF=30°(3分),
∵EG,HF垂直平分OB,OC,
∴OE=BE,OF=FC(5分),
∴∠BOE=∠OBE=30°,∠COF=∠OCF=30°,
∴∠OEF=∠OFE=60°,
∴三角形OEF是等邊三角形(8分),
∴OF=OE=EF,
∴BE=EF=FC(10分).
點(diǎn)評(píng):本題考查了線段垂直平分線的性質(zhì)、角平分線的定義以及等邊三角形的判定和性質(zhì),是基礎(chǔ)知識(shí)要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖所示,在等邊三角形ABC中,∠B、∠C的平分線交于點(diǎn)O,OB和OC的垂直平分線交BC于E、F,試用你所學(xué)的知識(shí)說明BE=EF=FC的道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在等邊三角形ABC中,高AD、BE相交于點(diǎn)F,連接DE,則∠FED的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在等邊三角形ABC中,O是三個(gè)內(nèi)角平分線的交點(diǎn),OD∥AB,OE∥AC,則圖中等腰三角形的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在等邊三角形ABC中,AD=BE=CF,若三個(gè)全等的三角形為一組,則圖中共有
5
5
組全等三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案