【題目】在平面直角坐標(biāo)系中,過格點(diǎn)A、B、C作一圓。
(1)弧AC的長為_____(結(jié)果保留π);
(2)點(diǎn)B與圖中格點(diǎn)的連線中,能夠與該圓弧相切的連線所對應(yīng)的格點(diǎn)的坐標(biāo)為_____.
【答案】(1)(2)(5,1)或(1,3)或(7,0)
【解析】
(1)根據(jù)垂徑定理的推論:弦的垂直平分線必過圓心,可以作弦AB和BC的垂直平分線,交點(diǎn)即為圓心,然后根據(jù)弧長的公式即刻得到結(jié)論;
(2)由弦AB與弦BC的垂直平分線的交點(diǎn)為圓心,找出圓心O′的位置,確定出圓心坐標(biāo),過點(diǎn)B與圓相切時(shí),根據(jù)切線的判定方法得到∠O′BF為直角時(shí),BF與圓相切,根據(jù)網(wǎng)格找出滿足條件的F坐標(biāo)即可.
(1)根據(jù)過格點(diǎn)A,B,C作一圓弧,
由圖形可得:三點(diǎn)組成的圓的圓心為:O′(2,0),
∴半徑
連接
則
∴弧AC的長
故答案為:
(2)∵由圖形可得:三點(diǎn)組成的圓的圓心為:O′(2,0),
∴只有時(shí),BF與圓相切,
此時(shí)△BO′D≌△FBE,EF=BD=2,
∴F點(diǎn)的坐標(biāo)為:(5,1)或(1,3)或(7,0),
則點(diǎn)B與下列格點(diǎn)的連線中,能夠與該圓弧相切的是(5,1)或(1,3)或(7,0),共3個(gè).
故答案為:(5,1)或(1,3)或(7,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=5,AC=12,點(diǎn)D是BC的中點(diǎn),將△ABD沿AD翻折得到△AED,連接BE,CE.則CE=___________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在河邊修建一個(gè)水泵站,分別向張村A和李莊B送水,已知張村A、李莊B到河邊的距離分別為2km和7km,且張、李二村莊相距13km.
(1)水泵應(yīng)建在什么地方,可使所用的水管最短?請?jiān)趫D中設(shè)計(jì)出水泵站的位置.
(2)如果鋪設(shè)水管的工程費(fèi)用為每千米1500元,為使鋪設(shè)水管費(fèi)用最節(jié)省,請求出最節(jié)省的鋪設(shè)水管的費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在Rt△ABC的斜邊AB上,且AC=6,
(1) 若AB比BC大2,①求AB的長;②若CD⊥AB于點(diǎn)D,求CD的長.
(2)若AD=7,DB=11, ∠CDB=2∠B,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第一年的可變成本為2.6萬元,設(shè)可變成本平均每年增長的百分率為
(1)用含x的代數(shù)式表示低3年的可變成本為 萬元;
(2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬元,求可變成本平均每年的增長百分率x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)感知:如圖(1),在△ABC中,分別以AB、AC為邊在△ABC外部作等邊三角形△ABD、△ACE,連接CD、BE.求證:BE=DC;
(2)應(yīng)用:如圖(2),在△ABC中,AB>AC,分別以AB、AC為邊在△ABC內(nèi)部作等腰三角形△ABD、△ACE,點(diǎn)E恰好在BC邊上,使AB=AD,AC=AE,且∠BAD=∠CAE,連接CD,CE=3cm,CD=2cm,△ABC的面積為25cm2,求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個(gè)正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,定義點(diǎn)P(x,y)的變換點(diǎn)為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為,
①請你判斷M(2,0),N(﹣2,﹣1)兩個(gè)點(diǎn)的變換點(diǎn)與⊙O的位置關(guān)系;
②若點(diǎn)P在直線y=x+2上,點(diǎn)P的變換點(diǎn)P′在⊙O的內(nèi),求點(diǎn)P橫坐標(biāo)的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點(diǎn)P′在直線y=﹣2x+6上,求點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對角線BD上一點(diǎn)(點(diǎn)P不與點(diǎn)B、D重合),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF給出下列五個(gè)結(jié)論:①AP=EF;②AP⊥EF;③僅有當(dāng)∠DAP=45°或67.5°時(shí),△APD是等腰三角形;④∠PFE=∠BAP:⑤PD=EC.其中有正確有( )個(gè).
A. 2B. 3C. 4D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com