如圖所示,在平面直角坐標(biāo)系中,現(xiàn)將一張等腰直角三角形紙片ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(-3,1),且拋物線y=ax2+ax-4a經(jīng)過(guò)點(diǎn)B.
(Ⅰ)求拋物線的解析式;
(Ⅱ)求點(diǎn)A和點(diǎn)C的坐標(biāo);
(Ⅲ)以AC所在直線為對(duì)稱軸,將△ABC折疊,問(wèn)點(diǎn)B的對(duì)稱點(diǎn)B1是否落在拋物線上?再以AC的中點(diǎn)為對(duì)稱中心,將△ABC作中心對(duì)稱變換,這時(shí)點(diǎn)B的對(duì)稱點(diǎn)B2是否落在拋物線上?若在,求出它們的坐標(biāo);若不在,請(qǐng)說(shuō)明理由.

【答案】分析:(Ⅰ)根據(jù)圖象經(jīng)過(guò)B點(diǎn)直接代入解析式求出a即可;
(Ⅱ)首先過(guò)點(diǎn)B作BD⊥x軸,證明△BCD≌△CAO,進(jìn)而得出A,C點(diǎn)的坐標(biāo);
(Ⅲ)首先證明△MB1C≌△DBC,同理可證△AB2N≌△CAO,即可得出點(diǎn)B1(1,-1)與點(diǎn)B2(2,1),進(jìn)而得出答案.
解答:解:(Ⅰ)∵拋物線y=ax2+ax-4a經(jīng)過(guò)點(diǎn)B,
∴1=9a-3a-4a,
解得:a=;
∴拋物線的解析式為:y=x2+x-2;

(Ⅱ)過(guò)點(diǎn)B作BD⊥x軸,垂足為D,
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,
∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,
∵點(diǎn)B坐標(biāo)是(-3,1),
∴BD=OC=1,CD=OA=2,
∴點(diǎn)A的坐標(biāo)S是(0,2),點(diǎn)C的坐標(biāo)是(-1,0);

(Ⅲ)B1和B2都在拋物線上,
延長(zhǎng)BC至點(diǎn)B1,使得B1C=BC,得到點(diǎn)B的對(duì)稱點(diǎn)B1,
過(guò)點(diǎn)B1作B1M⊥x軸,
∵CB1=CB,∠MCB1=∠BCD,∠B1MC=BDC=90°,
∴△MB1C≌△DBC,
∴CM=CD=2,B1M=BD=1,
可求得點(diǎn)B1(1,-1),
過(guò)點(diǎn)A作AB2∥CB,且AB2=CB,得到點(diǎn)B的對(duì)稱點(diǎn)B2
過(guò)點(diǎn)B2作B2N⊥y軸,
同理可證△AB2N≌△CAO,
∴NB2=OA=2,AN=OC=1,
可求得點(diǎn)B2(2,1),
經(jīng)檢驗(yàn),點(diǎn)B1(1,-1)與點(diǎn)B2(2,1)都在拋物線y=x2+x-2上.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用以及全等三角形的判定,熟練利用全等三角形的判定以及性質(zhì)得出有關(guān)點(diǎn)的坐標(biāo)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網(wǎng)交于點(diǎn)A,過(guò)點(diǎn)A分別作x軸、y軸的垂線,垂足為點(diǎn)B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到月牙②,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點(diǎn)P處開(kāi)始依次關(guān)于點(diǎn)A,B,C作循環(huán)對(duì)稱跳動(dòng),即第一次從點(diǎn)P跳到關(guān)于點(diǎn)A的對(duì)稱點(diǎn)M處,第二次從點(diǎn)M跳到關(guān)于點(diǎn)B的對(duì)稱點(diǎn)N處,第三次從點(diǎn)N跳到關(guān)于點(diǎn)C的對(duì)稱點(diǎn)處,…如此下去.
(1)在圖中標(biāo)出點(diǎn)M,N的位置,并分別寫(xiě)出點(diǎn)M,N的坐標(biāo):
 

(2)請(qǐng)你依次連接M、N和第三次跳后的點(diǎn),組成一個(gè)封閉的圖形,并計(jì)算這個(gè)圖形的面積;
(3)猜想一下,經(jīng)過(guò)第2009次跳動(dòng)之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對(duì)角線長(zhǎng)分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對(duì)角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點(diǎn)重合),依上述排列方式,對(duì)角線長(zhǎng)為n的第n個(gè)正方形的頂點(diǎn)An的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(-1,0)、B(3,0)兩點(diǎn),拋物線與y軸交點(diǎn)為C,其頂點(diǎn)為D,連接BD,點(diǎn)P是線段BD上一個(gè)動(dòng)點(diǎn)(不與B、D重合),過(guò)點(diǎn)P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時(shí),過(guò)點(diǎn)P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P',請(qǐng)直接寫(xiě)出P'點(diǎn)坐標(biāo),并判斷點(diǎn)P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案