【題目】如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,BC=10cm,AD=8cm,E點(diǎn)F點(diǎn)分別為AB,AC的中點(diǎn).
(1)求證:四邊形AEDF是菱形;
(2)求菱形AEDF的面積;
(3)若H從F點(diǎn)出發(fā),在線段FE上以每秒2cm的速度向E點(diǎn)運(yùn)動(dòng),點(diǎn)P從B點(diǎn)出發(fā),在線段BC上以每秒3cm的速度向C點(diǎn)運(yùn)動(dòng),問當(dāng)t為何值時(shí),四邊形BPHE是平行四邊形?當(dāng)t取何值時(shí),四邊形PCFH是平行四邊形?
【答案】(1)證明見解析;(2)20;(3)2秒
【解析】試題分析:(1)根據(jù)等腰三角形的三線合一可得出D為BC的中點(diǎn),結(jié)合E、F分別為AB、AC的中點(diǎn)可得出DE和DF是△ABC的中位線,根據(jù)中位線的定義可得出DE∥AC、DF∥AB,即四邊形AEDF是平行四邊形,根據(jù)三角形中位線定義可得出DE=AC、DF=AB,結(jié)合AB=AC即可得出DE=DF,從而得出四邊形AEDF是菱形;
(2)根據(jù)中位線的定義可得出EF的長(zhǎng)度,根據(jù)菱形的面積公式可求出菱形AEDF的面積;
(3)由中位線的定義可得出EF∥BC,根據(jù)平行四邊形的判定定理可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
詳解:(1)證明:∵AB=AC,AD⊥BC,
∴D為BC的中點(diǎn).
∵E、F分別為AB、AC的中點(diǎn),
∴DE和DF是△ABC的中位線,
∴DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形.
∵E,F分別為AB,AC的中點(diǎn),AB=AC,
∴AE=AF,
∴四邊形AEDF是菱形,
(2)解:∵EF為△ABC的中位線,
∴EF=BC=5.
∵AD=8,AD⊥EF,
∴S菱形AEDF=ADEF=×8×5=20.
(3)解:∵EF∥BC,
∴EH∥BP.
若四邊形BPHE為平行四邊形,則須EH=BP,
∴5﹣2t=3t,
解得:t=1,
∴當(dāng)t=1秒時(shí),四邊形BPHE為平行四邊形.
∵EF∥BC,
∴FH∥PC.
若四邊形PCFH為平行四邊形,則須FH=PC,
∴2t=10﹣3t,
解得:t=2,
∴當(dāng)t=2秒時(shí),四邊形PCFH為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A. 事件“任意一個(gè)x(x為實(shí)數(shù))值,x2是不確定事件”
B. 已知某籃球運(yùn)動(dòng)員投籃投中的概率為0.6,則他投十次一定投中6次
C. 為了了解我市各超市銷售的速凍食品質(zhì)量情況,適合采取普查的方式調(diào)查
D. 投擲一枚質(zhì)地均勻的硬幣10次,可能有5次正面向上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為了答謝顧客,凡在本超市購(gòu)物的顧客,均可憑購(gòu)物小票參與抽獎(jiǎng)活動(dòng),獎(jiǎng)品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(600ml),抽獎(jiǎng)規(guī)則如下:①如圖,是一個(gè)材質(zhì)均勻可自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個(gè)扇形區(qū)域,每個(gè)區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎(jiǎng)活動(dòng)的顧客可進(jìn)行兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”(當(dāng)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,可獲得指針?biāo)竻^(qū)域的字樣,我們稱這次轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”);③假設(shè)顧客轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”;④當(dāng)顧客完成一次抽獎(jiǎng)活動(dòng)后,記下兩次指針?biāo)竻^(qū)域的兩個(gè)字,只要這兩個(gè)字和獎(jiǎng)品名稱的兩個(gè)字相同(與字的順序無(wú)關(guān)),便可獲得相應(yīng)獎(jiǎng)品一瓶;不相同時(shí),不能獲得任何獎(jiǎng)品.
根據(jù)以上規(guī)則,回答下列問題:
(1)求一次“有效隨機(jī)轉(zhuǎn)動(dòng)”可獲得“樂”字的概率;
(2)有一名顧客憑本超市的購(gòu)物小票,參與了一次抽獎(jiǎng)活動(dòng),請(qǐng)你用列表或樹狀圖等方法,求該顧客經(jīng)過兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”后,獲得一瓶可樂的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點(diǎn)E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求證:△AEF∽△ABC:
(2)求正方形EFMN的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無(wú)法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已知點(diǎn)的坐標(biāo),點(diǎn)位置如圖所示,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱。
(1)在圖中描出點(diǎn);寫出圖中點(diǎn)的坐標(biāo):______________,點(diǎn)的坐標(biāo):_______________;
(2)畫出關(guān)于軸的對(duì)稱圖形,并求出四邊形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為6cm 的⊙O中,C,D為直徑AB 的三等分點(diǎn),點(diǎn)E,F分別在AB兩側(cè)的半圓上,∠BCE =∠BDF = 60°,連結(jié)AE,BF.則圖中兩個(gè)陰影部分的面積和為 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一個(gè)平面去截正方體(如圖),下列關(guān)于截面(截出的面)形狀的結(jié)論:
①可能是銳角三角形;②可能是鈍角三角形;
③可能是長(zhǎng)方形;④可能是梯形.
其中正確結(jié)論的是______(填序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com