若⊙上的弧和⊙上的弧的長(zhǎng)度相等,則⊙和⊙的面積之比是


  1. A.
    16∶9
  2. B.
    9∶16
  3. C.
    4∶3
  4. D.
    3∶4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=x2-(2m-1)x+4m-6.
(1)試說(shuō)明對(duì)于每一個(gè)實(shí)數(shù)m,拋物線(xiàn)都經(jīng)過(guò)x軸上的一個(gè)定點(diǎn);
(2)設(shè)拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)A(x1,0)和B(x2,0)(x1<x2)分別在原點(diǎn)的兩側(cè),且A、B兩點(diǎn)間的距離小于6,求m的取值范圍;
(3)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)C(
2m-1
2
,0)
,在(2)的條件下,試判斷是否存在m的值,使經(jīng)過(guò)點(diǎn)C及拋物線(xiàn)與x軸的一個(gè)交點(diǎn)的⊙M與y軸的正半軸相切于點(diǎn)D,且被x軸截得的劣弧與
CD
是等?若存在,求出所有滿(mǎn)足條件的m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省儀征市九年級(jí)第二次模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在△ABC中,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)FAC的延長(zhǎng)線(xiàn)上,且AC=CF,∠CBF=∠CFB

(1)求證:直線(xiàn)BF是⊙O的切線(xiàn);
(2)若點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),當(dāng)AD=5時(shí),求BF的長(zhǎng)和扇形DOE的面積;
(3)在(2)的條件下,如果以點(diǎn)C為圓心,r為半徑的圓上總存在不同的兩點(diǎn)到點(diǎn)O的距離為5,則r的取值范圍為            

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省泰州市永安初級(jí)中學(xué)九年級(jí)下學(xué)期第二次涂卡訓(xùn)練數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在△ABC中,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線(xiàn)上,且AC=CF,∠CBF=∠CFB.
  
(1)求證:直線(xiàn)BF是⊙O的切線(xiàn);
(2)若點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),當(dāng)AD=5時(shí),求BF的長(zhǎng)和扇形DOE的面積;
(3)在(2)的條件下,如果以點(diǎn)C為圓心,r為半徑的圓上總存在不同的兩點(diǎn)到點(diǎn)O的距離為5,則r的取值范圍為           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•濟(jì)寧)已知拋物線(xiàn)y=x2-(2m-1)x+4m-6.
(1)試說(shuō)明對(duì)于每一個(gè)實(shí)數(shù)m,拋物線(xiàn)都經(jīng)過(guò)x軸上的一個(gè)定點(diǎn);
(2)設(shè)拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)A(x1,0)和B(x2,0)(x1<x2)分別在原點(diǎn)的兩側(cè),且A、B兩點(diǎn)間的距離小于6,求m的取值范圍;
(3)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,在(2)的條件下,試判斷是否存在m的值,使經(jīng)過(guò)點(diǎn)C及拋物線(xiàn)與x軸的一個(gè)交點(diǎn)的⊙M與y軸的正半軸相切于點(diǎn)D,且被x軸截得的劣弧與是等。咳舸嬖,求出所有滿(mǎn)足條件的m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省儀征市九年級(jí)第二次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在△ABC中,以AB為直徑的⊙O分別交ACBC于點(diǎn)D、E,點(diǎn)FAC的延長(zhǎng)線(xiàn)上,且ACCF,∠CBF=∠CFB

(1)求證:直線(xiàn)BF是⊙O的切線(xiàn);

(2)若點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),當(dāng)AD=5時(shí),求BF的長(zhǎng)和扇形DOE的面積;

(3)在(2)的條件下,如果以點(diǎn)C為圓心,r為半徑的圓上總存在不同的兩點(diǎn)到點(diǎn)O的距離為5,則r的取值范圍為            

 

查看答案和解析>>

同步練習(xí)冊(cè)答案