如圖甲所示,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上一點,過A點作AG⊥BE,垂足為G,AG交BD于點F,則OE=OF,若點E在AC的延長線上,AG⊥EB,交EB的延長線于點G,AG的延長線交DB的延長線于點F,其他條件不變,如圖乙所示,則OE=OF還成立嗎?說明理由.

答案:
解析:

  解:OE=OF仍然成立.理由如下:

  因為四邊形ABCD是正方形,

  所以∠BOE=∠AOF=90°,BO=AO.

  又因為AG⊥EB,

  所以∠OEB+∠EAF=90°=∠OFA+∠FAE.

  所以∠OEB=∠OFA.

  所以Rt△BOE≌Rt△AOF.

  所以O(shè)E=OF.

  分析:若能證明△BOE≌△AOF,則結(jié)論OE=OF成立,因此,證明△BOE≌△AOF是解題關(guān)鍵.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖甲所示,已知拋物線經(jīng)過原點O和x軸上另一點E,頂點M的坐標為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖乙所示).
①當t=
52
時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點,與原拋物線交于點Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省衢州市江山二中九年級(上)第一次質(zhì)量檢測數(shù)學試卷(解析版) 題型:解答題

如圖甲所示,已知拋物線經(jīng)過原點O和x軸上另一點E,頂點M的坐標為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖乙所示).
①當時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點,與原拋物線交于點Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

同步練習冊答案