如圖,點(diǎn)E、F分別是四邊形ABCD的對(duì)角線BD的三等分點(diǎn),CE、CF的延長(zhǎng)線分別平分AB、AD,且交AB、AD于G、H.求證:四邊形ABCD是平行四邊形.

答案:
解析:

  證明:連AE、AF、AC,設(shè)AC與BD相交于點(diǎn)O,則

  ∵G是AB中點(diǎn),E是BD的三等分點(diǎn),

  ∴GE是△BAF的中位線,

  ∴GEAF.

  即AF∥EC.

  又∵H是AD中點(diǎn),F(xiàn)是BD的三等分點(diǎn),

  ∴HF是△DAE的中位線.

  ∴HFAE.

  即CF∥AE.

  ∴四邊形AECF是平行四邊形.

  ∴OA=OC,OE=OF.

  又∵BE=DF=BD,

  ∴BE+OE=DF+OF.

  即OB=OD.

  ∴四邊形ABCD是平行四邊形.


提示:

點(diǎn)悟:欲證四邊形ABCD是平行四邊形,只需證其對(duì)角線互相平分.而題中諸多的中點(diǎn)和等分點(diǎn)又提供了中位線的應(yīng)用的條件.故可添加輔助線,構(gòu)造中位線.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,點(diǎn)D、E分別是△ABC邊AB、AC上的點(diǎn),且DE∥BC,BD=2AD,那么△ADE的周長(zhǎng):△ABC的周長(zhǎng)=
1:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D,E分別是矩形OABC中AB和BC邊上的中點(diǎn),點(diǎn)B的坐標(biāo)為(6,4)
(1)寫出A,C,E,D四點(diǎn)的坐標(biāo);并判斷點(diǎn)O到直線DE的距離是否等于線段的OE長(zhǎng);
(2)動(dòng)點(diǎn)F在線段DE上,F(xiàn)G⊥x軸于G,F(xiàn)H⊥y軸于H,求矩形面積最大時(shí)點(diǎn)F的坐標(biāo)(利用圖1解答);
(3)我們給出如下定義:分別過拋物向上的兩點(diǎn)(不在x軸上)作x軸的垂線,如果以這兩點(diǎn)及垂足為頂點(diǎn)的矩形在這條拋物線與x軸圍成的封閉圖形內(nèi)部,則稱這個(gè)矩形是這條拋物線的內(nèi)接矩形,請(qǐng)你理解上述定義,解答下面的問題:若矩形OABC是某個(gè)拋物線的周長(zhǎng)最大的內(nèi)接矩形,求這個(gè)拋物線的解析式(利用圖2解答).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)E、D分別是正三角形ABC、正四邊形ABCM、正五邊形ABCMN中以C點(diǎn)為頂點(diǎn)的一邊延長(zhǎng)線和另一邊反向延長(zhǎng)線上的點(diǎn),且
BE=CD,DB的延長(zhǎng)線交AE于點(diǎn)F,則圖1中∠AFB的度數(shù)為
 
;若將條件“正三角形、正四邊形、正五邊形”改為“正n邊形”,其他條件不變,則∠AFB的度數(shù)為
 
.(用n的代數(shù)式表示,其中,n≥3,且n為整數(shù))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•武漢模擬)如圖,點(diǎn)I和O分別是△ABC的內(nèi)心和外心,則∠AIB和∠AOB的關(guān)系為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)E、D分別是正三角形ABC中以C點(diǎn)為頂點(diǎn)的一邊延長(zhǎng)線和另一邊反向延長(zhǎng)線上的點(diǎn),且BE=CD,DB延長(zhǎng)線交于AE于點(diǎn)F,則∠AFB的度數(shù)是
60°
60°

查看答案和解析>>

同步練習(xí)冊(cè)答案