【題目】如圖1,已知點(diǎn)E在正方形ABCD的邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.
(1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來(lái)證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
(2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).
①AE=EF是否總成立?請(qǐng)給出證明;
②在圖2的AB邊上是否存在一點(diǎn)M,使得四邊形DMEF是平行四邊形?若存在,請(qǐng)給予證明;若不存在,請(qǐng)說(shuō)明理由.
【答案】見(jiàn)解析
【解析】(1)解:如圖1,取AB的中點(diǎn)G,連接EG,
△AGE與△ECF全等;
(2)①若點(diǎn)E在線段BC上滑動(dòng)時(shí),AE=EF總成立.
證明:如圖2,在AB上截取AH=EC,連接EH,
∵AB=BC,
∴BH=BE,
∴△HBE是等腰直角三角形,
∴∠AHE=180°﹣45°=135°,
又∵CF平分正方形的外角,
∴∠ECF=135°,
∴∠AHE=∠ECF.
而∠BAE+∠AEB=∠CEF+∠AEB=90°,
∴∠BAE=∠CEF,
∴△AHE≌△ECF,
∴AE=EF;
②答:存在,如圖3,
過(guò)D作DM⊥AE交AB于點(diǎn)M,
則有:DM∥EF,連接ME、DF,
∵在△ADM與△BAE中,,
∴△ADM≌△BAE(AAS),
∴MD=AE,
∵AE=EF,
∴MD=EF,
∵MD∥EF,
∴四邊形DMEP為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過(guò)C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過(guò)C作CG∥AE交BA的延長(zhǎng)線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)AB在x軸上,點(diǎn)D的坐標(biāo)為(6,8),點(diǎn)E在邊BC上,△CDE沿DE翻折后點(diǎn)C恰好落在x軸上點(diǎn)F處,若△ODF為等腰三角形,點(diǎn)E的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠ACB=90°,AC=3,tanA=,CD⊥AB于點(diǎn)D,DE⊥AC,點(diǎn)F在線段BC上,EF交CD于點(diǎn)M.
(1)求CD的長(zhǎng);
(2)若△EFC與△ABC相似,試求線段EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市參加中考的25000名學(xué)生的身高情況,抽查了其中1200名學(xué)生的身高進(jìn)行統(tǒng)計(jì)分析.下面敘述正確的是( )
A.25000名學(xué)生是總體 B.1200名學(xué)生的身高是總體的一個(gè)樣本
C.每名學(xué)生是總體的一個(gè)個(gè)體 D.以上調(diào)查是全面調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列條件中,不能判定兩個(gè)直角三角形全等的是( 。
A. 兩條直角邊對(duì)應(yīng)相等 B. 斜邊和一個(gè)銳角對(duì)應(yīng)相等
C. 斜邊和一條直角邊對(duì)應(yīng)相等 D. 一條直角邊和一個(gè)銳角分別相等
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com