【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC=12cm,點 D 為△ABC 內一點,∠BAD=15°,AD= 4 cm,連接 BD,將△ABD 繞點 A 按逆時針方向旋轉,使 AB 與 AC 重合,點 D 的對應點點 E,連接 DE,DE 交 AC 于點 F,則 CF 的長為__________cm.
【答案】4
【解析】
根據旋轉的性質以及直角三角形的性質得出△DAE是等腰直角三角形,進而求出DE的長度和叫FAG的度數,再利用直角三角形中30°的性質以及三角函數計算即可得出答案.
如圖所示,過點A作BE的垂線交BE于點G
根據旋轉的性質可知:AB=AC=12cm
∴AD=AE=cm,∠BAD=∠CAE=15°
∵∠BAC=90°,即∠BAD+∠DAF=90°
∴∠CAE+∠DAF=90°,即∠DAE=90°
∵AD=AE
∴△DAE是等腰直角三角形
∴∠AED=45°,DE=cm
∵AG⊥DE
∴∠EAG=45°
∵∠CAE=15°
∴∠FAG=∠EAG-∠EAF=30°
∵AG=DE=cm
∴AF=cm
∴CF=AC-AF=12-8=4cm
故答案為4.
科目:初中數學 來源: 題型:
【題目】有足夠多的長方形和正方形卡片,如下圖:
(1)如果選取1號、2號、3號卡片分別為l張、1張、2張,可拼成一個長方形(不重疊無縫隙),請畫出這個長方形(所畫圖形大小和原圖保持一致),并用等式表示拼圖前后面積之間的關系:
(2)小明用類似方法解釋分解因式a2+5ab+4b2,請畫圖說明小明的方法(所畫圖形大小和原圖保持一致),并寫出分解因式的結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,∠DCE的角平分線CG的反向延長線和∠ABE的角平分線BF交于點F,∠E﹣∠F=36°,則∠E=( )
A.82°B.84°C.97°D.90°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(﹣2,1),B(﹣1,4).
(1)請你在方格中建立直角坐標系,并寫出C點的坐標;
(2)把△ABC向上平移2個單位長度,再向右平移3個單位長度,請你畫出平移后的△A1B1C1,若△ABC內部一點P的坐標為(a,b),則點P的對應點P1的坐標是 .
(3)在x軸上存在一點D,使△DBC的面積等于3,則點D的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知ADBC,BC,垂足分別為D、F,23180,試說明:GDCB,請補充說明過程,并在括號內填上相應的理由。
解:ADBC,EFBC(已知)
ADBEFB90( ① ),
EF//AD( ② ),
③ 2180( ④ ),
又23180(已知),
13( ⑤ ),
AB// ⑥ ( ⑦ ),
∴∠GDC=∠B( ⑧ )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形和正方形中,邊在邊上,正方形繞點按逆時針方向旋轉
(1)如圖2,當時,求證:;
(2)在旋轉的過程中,設的延長線交直線于點.①如果存在某一時刻使得,請求出此時的長;②若正方形繞點按逆時針方向旋轉了,求旋轉過程中,點運動的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司生產一種新型生物醫(yī)藥產品,生產成本為2萬元/ 噸,每月生產能力為12噸,且生產出的產品都能銷售出去.這種產品部分內銷,另一部分外銷(出口),內銷與外銷的單價 (單位:萬元/噸)與銷量的關系分別如圖1,圖2.
(1)如果該公司內銷數量為x(單位:噸),內、外銷單價分別為y 1 , y 2 ,求, 關于x的函數解析式;
(2)如果該公司內銷數量為x(單位:噸),求內銷獲得的毛利潤 關于x的函數解析式;
(3)請設計一種銷售方案,使該公司本月能獲得最大毛利潤,并求出毛利潤的最大值.(毛利潤=銷售收入-生產成本).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com