【題目】(8分)已知拋物線y1=ax2+bx+c(a≠0)與x軸相交于點A,B(點A,B在原點O兩側(cè)),與y軸相交于點C,且點A,C在一次函數(shù)y2= x+n的圖象上,線段AB長為16,線段OC長為8,當(dāng)y1隨著x的增大而減小時,求自變量x的取值范圍.
【答案】x>2或x<﹣2
【解析】試題分析:(1)根據(jù)OC的長度確定出n的值為8或-8,然后分①n=8時求出點A的坐標(biāo),然后確定拋物線開口方向向下并求出點B的坐標(biāo),再求出拋物線的對稱軸解析式,然后根據(jù)二次函數(shù)的增減性求出x的取值范圍;②n=-8時求出點A的坐標(biāo),然后確定拋物線開口方向向上并求出點B的坐標(biāo),再求出拋物線的對稱軸解析式,然后根據(jù)二次函數(shù)的增減性求出x的取值范圍.
試題解析:根據(jù)OC長為8可得一次函數(shù)中的n的值為8或﹣8.
分類討論:①n=8時,易得A(﹣6,0)如圖1,
∵拋物線經(jīng)過點A、C,且與x軸交點A、B在原點的兩側(cè),
∴拋物線開口向下,則a<0,
∵AB=16,且A(﹣6,0),
∴B(10,0),而A、B關(guān)于對稱軸對稱,
∴對稱軸直線x==2,
要使y1隨著x的增大而減小,則a<0,
∴x>2;
②n=﹣8時,易得A(6,0),如圖2,
∵拋物線過A、C兩點,且與x軸交點A,B在原點兩側(cè),
∴拋物線開口向上,則a>0,
∵AB=16,且A(6,0),
∴B(﹣10,0),而A、B關(guān)于對稱軸對稱,
∴對稱軸直線x==﹣2,
要使y1隨著x的增大而減小,且a>0,
∴x<﹣2.
綜上所述,x>2或x<2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列的說法中,正確的是 ( )
A. 會重合的圖形一定是軸對稱圖形.
B. 中心對稱圖形一定是會重合的圖形.
C. 兩個成中心對稱的圖形的對稱點連線必過對稱中心.
D. 兩個會重合的三角形一定關(guān)于某一點成中心對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( )
A. x2+x2=x4B. (x﹣y)2=x2﹣y2C. (﹣x)2x3=x5D. (x2y)3=x6y
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一組數(shù)據(jù)6、7、x、10、5的眾數(shù)是7,那么這組數(shù)據(jù)的平均數(shù)為_____________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標(biāo)為(3,0),與y軸交于點,點P是直線BC下方拋物線上的一個動點.
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你認為其中正確的信息是_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(-3,4)所在的象限為( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com