【題目】拋物線y=x2+bx+c過點(2,﹣2)和(﹣1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.
【答案】
(1)解:將點(2,﹣2)和(﹣1,10),代入y=x2+bx+c得:
,
解得: ,
∴拋物線的解析式為:y=x2﹣5x+4
(2)解:當y=0,則x2﹣5x+4=0,
解得:x1=1,x2=4,
∴AB=4﹣1=3,
當x=0,則y=4,
∴CO=4,
∴△ABC的面積為: ×3×4=6
【解析】(1)利用待定系數法求二次函數解析式即可;(2)首先求出圖象與x軸以及y軸交點坐標,即可得出AB以及CO的長,即可得出△ABC的面積.
【考點精析】掌握拋物線與坐標軸的交點是解答本題的根本,需要知道一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數學 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.
(1)求該拋物線的函數關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點C是 的中點,∠COB=60°,過點C作CE⊥AD,交AD的延長線于點E
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數是( 。
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°。
①當點D在AC上時,如圖1,線段BD、CE有怎樣的數量關系和位置關系?寫出你猜想的結論,并說明理由;
②將圖1中的△ADE繞點A順時針旋轉α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數量關系和位置關系?請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖已知△ABC.
(1)請用尺規(guī)作圖法作出BC的垂直平分線DE,垂足為D,交AC于點E, (保留作圖痕跡,不寫作法);
(2)請用尺規(guī)作圖法作出∠C的角平分線CF,交AB于點F,(保留作圖痕跡,不寫作法);
(3)請用尺規(guī)作圖法在BC上找出一點P,使△PEF的周長最小.(保留作圖痕跡,不寫作法).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com