如圖,已知正方形OABC的邊長為 2,點D為 CO的中點,拋物線經(jīng)過點A,且頂點為 D,點P為拋物線上的動點,且橫坐標(biāo)為 m。
(1)求該拋物線的解析式。
(2)過點P作直線EP平行于y軸,交BC所在直線于點E,連接OP,某數(shù)學(xué)小組在探究時發(fā)現(xiàn):動點P到BC所在直線的距離PE始終等于OP,你認(rèn)為正確嗎?請說明理由。
(3)在(2)中,連接OE,當(dāng)△OPE為銳角三角形、直角三角形、鈍角三角形、等邊三角形時,分別求 m的取值范圍。
解:(1)由題意知點D的坐標(biāo)為(0,1), 故設(shè)該拋物線的解析式為 y = ax2 +1,
將 A(2,0)代人,解得,∴該拋物線的解析式為y= 。  
(2)正確    
理由:由題可知,動點P的坐標(biāo)為(m,),
則OP ==
PE =即OP =PE,故該數(shù)學(xué)小組的結(jié)論是正確的。      
(3)當(dāng)△OPE為直角三角形時,m =±2;
當(dāng)△OPE為鈍角三角形時,- 2<m<2且m≠0;
當(dāng)△OPE為銳角三角形時,m< -2或m>2;
當(dāng)△OPE為等邊三角形時,x軸垂直平分EP,即,解得m =
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形OABC在直角坐標(biāo)系xOy中,點A、C分別在x軸、y軸的正半軸上,點O在坐標(biāo)原點.等腰直角三角板OEF的直角頂點O在原點,E、F分別在OA、OC上,且OA=4,OE=精英家教網(wǎng)2.將三角板OEF繞O點逆時針旋轉(zhuǎn)至OE1F1的位置,連接CF1、AE1
(1)求證:△OAE1≌△OCF1
(2)若三角板OEF繞O點逆時針旋轉(zhuǎn)一周,是否存在某一位置,使得OE∥CF?若存在,請求出此時E點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形OABC的邊長為4,⊙M是以O(shè)C為直徑的圓,現(xiàn)以O(shè)為原點,邊OA、OC所在的直線為坐標(biāo)軸建精英家教網(wǎng)立平面直角坐標(biāo)系,使點B落在第四象限,一條拋物線y=ax2+bx經(jīng)過O、C兩點,并將拋物線的頂點記作P.
(1)求證:4a+b=0;
(2)當(dāng)點P同時在⊙M和正方形OABC的內(nèi)部時,求a的取值范圍;
(3)過A點作直線AD切⊙M于點D,交BC于點E.
①求E點的坐標(biāo);
②如果拋物線與直線y=x-4只有一個公共點,請你判斷四邊形CMPE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,拋物線y=-
23
x2+bx+c經(jīng)過點A,B,交正x軸于點D,E是OC上的動點(不與C重合)連接EB,過B點作BF⊥BE交y軸與F
(1)求b,c的值及D點的坐標(biāo);
(2)求點E在OC上運動時,四邊形OEBF的面積有怎樣的規(guī)律性?并證明你的結(jié)論;
(3)連接EF,BD,設(shè)OE=m,△BEF與△BED的面積之差為S,問:當(dāng)m為何值時S最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(7)(解析版) 題型:解答題

如圖,已知正方形OABC的邊長為4,⊙M是以O(shè)C為直徑的圓,現(xiàn)以O(shè)為原點,邊OA、OC所在的直線為坐標(biāo)軸建立平面直角坐標(biāo)系,使點B落在第四象限,一條拋物線y=ax2+bx經(jīng)過O、C兩點,并將拋物線的頂點記作P.
(1)求證:4a+b=0;
(2)當(dāng)點P同時在⊙M和正方形OABC的內(nèi)部時,求a的取值范圍;
(3)過A點作直線AD切⊙M于點D,交BC于點E.
①求E點的坐標(biāo);
②如果拋物線與直線y=x-4只有一個公共點,請你判斷四邊形CMPE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(04)(解析版) 題型:解答題

(2010•濰坊)如圖,已知正方形OABC在直角坐標(biāo)系xOy中,點A、C分別在x軸、y軸的正半軸上,點O在坐標(biāo)原點.等腰直角三角板OEF的直角頂點O在原點,E、F分別在OA、OC上,且OA=4,OE=2.將三角板OEF繞O點逆時針旋轉(zhuǎn)至OE1F1的位置,連接CF1、AE1
(1)求證:△OAE1≌△OCF1
(2)若三角板OEF繞O點逆時針旋轉(zhuǎn)一周,是否存在某一位置,使得OE∥CF?若存在,請求出此時E點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案