【題目】如圖,二次函數(shù)y=﹣x2+x+2交x軸于點(diǎn)A.B(A在B的右側(cè)),與y軸交于點(diǎn)C,D為第一象限拋物線上的動(dòng)點(diǎn),則△ACD面積的最大值是_____
【答案】1
【解析】
先計(jì)算當(dāng)x=0時(shí)的函數(shù)值得到C(0,2),解方程﹣x2+x+2=0得A(2,0),易得直線AC的解析式為y=﹣x+2,作DE∥y軸交AC于E,如圖,設(shè)D(t,﹣t2+t+2),則E(t,﹣t+2),利用三角形面積公式得到△ACD面積=×2×DE=﹣t2+2t,然后根據(jù)二次函數(shù)的性質(zhì)解決問題.
當(dāng)x=0時(shí),y=﹣x2+x+2=2,則C(0,2),
當(dāng)y=0時(shí),﹣x2+x+2=0,解得x1=﹣1,x2=2,則A(2,0),
易得直線AC的解析式為y=﹣x+2,
作DE∥y軸交AC于E,如圖,
設(shè)D(t,﹣t2+t+2),則E(t,﹣t+2),
∴DE=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,
∴△ACD面積=×2×DE=﹣t2+2t=﹣(t﹣1)2+1,
當(dāng)t=1時(shí),△ACD面積有最大值為1.
故答案為:1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過三個(gè)景點(diǎn)A、B、C,景區(qū)管委會(huì)又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn)D,經(jīng)測(cè)量景點(diǎn)D位于景點(diǎn)A的北偏東30°方向8km處,位于景點(diǎn)B的正北方向,還位于景點(diǎn)C的北偏西75°方向上,已知AB=5km.
(1)景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)D向公路a修建一條距離最短的公路,不考慮其它因素,求出這條公路的長;(結(jié)果精確到0.1km)
(2)求景點(diǎn)C與景點(diǎn)D之間的距離.(結(jié)果精確到1km)
(參考數(shù)據(jù): =1.73, =2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線交于點(diǎn),點(diǎn),與軸交于點(diǎn).
(1)求的值和拋物線的解析式;
(2)直接寫出方程的解;
(3)點(diǎn)是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),判斷的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅和小華都想去參加學(xué)校組織的演講比賽,但現(xiàn)在名額只有一個(gè),于是小英想出了一個(gè)辦法:讓小紅和小華分別轉(zhuǎn)動(dòng)下圖的甲、乙兩個(gè)轉(zhuǎn)盤(轉(zhuǎn)盤甲被二等分、轉(zhuǎn)盤乙被四等分),在兩個(gè)轉(zhuǎn)盤都停止轉(zhuǎn)動(dòng)后,若指針?biāo)傅膬蓚(gè)數(shù)字之和為偶數(shù),則小紅去;若指針?biāo)傅膬蓚(gè)數(shù)字之和為奇數(shù),則小華去,你認(rèn)為這個(gè)方法公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)C.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)求△AOC的面積;
(3)已知點(diǎn)P是x軸正半軸上的一點(diǎn),若△COP是等腰三角形,直接寫點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某廣場(chǎng)設(shè)計(jì)的一建筑物造型的縱截面是拋物線的一部分,拋物線的頂點(diǎn)O落在水平面上,對(duì)稱軸是水平線OC.點(diǎn)A、B在拋物線造型上,且點(diǎn)A到水平面的距離AC=4米,點(diǎn)B到水平面距離為2米,OC=8米.
(1)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線的函數(shù)解析式;
(2)為了安全美觀,現(xiàn)需在水平線OC上找一點(diǎn)P,用質(zhì)地、規(guī)格已確定的圓形鋼管制作兩根支柱PA、PB對(duì)拋物線造型進(jìn)行支撐加固,那么怎樣才能找到兩根支柱用料最。ㄖеc地面、造型對(duì)接方式的用料多少問題暫不考慮)時(shí)的點(diǎn)P?(無需證明)
(3)為了施工方便,現(xiàn)需計(jì)算出點(diǎn)O、P之間的距離,那么兩根支柱用料最省時(shí)點(diǎn)O、P之間的距離是多少?(不寫求解過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對(duì)稱軸為直線,且過點(diǎn),有下列結(jié)論:
①;②;③;④;⑤,其中正確的結(jié)論有( )
A.①③⑤B.①②⑤C.①④⑤D.③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),的坐標(biāo)分別為和,拋物線的頂點(diǎn)在線段上運(yùn)動(dòng)(拋物線隨頂點(diǎn)一起平移),與軸交于、兩點(diǎn)(在的左側(cè)),點(diǎn)的橫坐標(biāo)最小值為-6,則點(diǎn)的橫坐標(biāo)最大值為( )
A.-3B.1C.5D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).
(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com