(2013•青島)某企業(yè)2010年底繳稅40萬元,2012年底繳稅48.4萬元.設(shè)這兩年該企業(yè)交稅的年平均增長(zhǎng)率為x,根據(jù)題意,可得方程
40(1+x)2=48.4
40(1+x)2=48.4
分析:根據(jù)增長(zhǎng)率問題,一般用增長(zhǎng)后的量=增長(zhǎng)前的量×(1+增長(zhǎng)率),如果設(shè)該公司這兩年繳稅的年平均增長(zhǎng)率為x,首先表示出2011年的繳稅額,然后表示出2012年的繳稅額,即可列出方程.
解答:解:設(shè)該公司這兩年繳稅的年平均增長(zhǎng)率為x,
依題意得40(1+x)2=48.4.
故答案為:40(1+x)2=48.4.
點(diǎn)評(píng):此題主要考查了由實(shí)際問題抽象出一元二次方程中增長(zhǎng)率問題,一般形式為a(1+x)2=b,a為起始時(shí)間的有關(guān)數(shù)量,b為終止時(shí)間的有關(guān)數(shù)量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•青島)已知:如圖,?ABCD中,AD=3cm,CD=1cm,∠B=45°,點(diǎn)P從點(diǎn)A出發(fā),沿AD方向勻速運(yùn)動(dòng),速度為3cm/s;點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動(dòng),速度為1cm/s,連接并延長(zhǎng)QP交BA的延長(zhǎng)線于點(diǎn)M,過M作MN⊥BC,垂足是N,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<1)
解答下列問題:
(1)當(dāng)t為何值時(shí),四邊形AQDM是平行四邊形?
(2)設(shè)四邊形ANPM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式:
(3)是否存在某一時(shí)刻t,使四邊形ANPM的面積是平行四邊形ABCD的面積的一半?若存在,求出相應(yīng)的t值;若不存在,說明理由.
(4)連接AC,是否存在某一時(shí)刻t,使NP與AC的交點(diǎn)把線段AC分成
2
:1的兩部分?若存在,求出相應(yīng)的t值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•青島)某校對(duì)甲、乙兩名跳高運(yùn)動(dòng)員的近期跳高成績(jī)進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下:
.
x
=1.69m,
.
x
=1.69m,S2=0.0006,S2=0.00315,則這兩名運(yùn)動(dòng)員中
的成績(jī)更穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•青島)某校學(xué)生捐款支援地震災(zāi)區(qū),第一次捐款總額為6600元,第二次捐款總額為7260元,第二次捐款人數(shù)比第一次多30人,而且兩次人均捐款額恰好相等.求第一次的捐款人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•青島)某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元/件.試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件;銷售單價(jià)每上漲1元,每天的銷售量就減少10件.
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷部結(jié)合上述情況,提出了A、B兩種營(yíng)銷方案:
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案