【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,D是邊AC的中點,CE⊥BD交AB于點E.
(1)求tan∠ACE的值;
(2)求AE:EB.
【答案】(1) (2)8:9
【解析】試題分析:(1)根據同角的余角相等可證得: ∠ACE=∠CBD,因為點D是AC的中點,所以CD=2,所以tan∠ACE=tan∠CBD=,(2) 過A作AC的垂線交CE的延長線于P,
在△CAP中,CA=4,∠CAP=90°,所以tan∠ACP=,所以AP=,又因為∠ACB=90°,
∠CAP=90°,可證得BC∥AP, 所以AE:EB=AP:BC=8:9.
試題解析:(1)因為∠ACB=90°,CE⊥BD,
所以∠ACE=∠CBD,
在△BCD中,BC=3,CD=AC=2,∠BCD=90°,
tan∠CBD=,
即tan∠ACE=.
(2)過A作AC的垂線交CE的延長線于P,
則在△CAP中,CA=4,∠CAP=90°,tan∠ACP=,
得AP=,
又∠ACB=90°,∠CAP=90°,得BC∥AP,
得AE:EB=AP:BC=8:9.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,D為BC上一點,且∠DAB=45°.
(1) 求∠DAC的度數.
(2) 求證:△ACD是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了解學生到校交通方式情況,隨機抽取各年級部分學生就“上下學交通方式”進行問卷調查,調查分為“A:騎自行車;B:步行;C:坐公交車;D:其他”四種情況,并根據調查結果繪制出部分條形統(tǒng)計圖(如圖①)和部分扇形統(tǒng)計圖(如圖②),請根據圖中的信息,解答下列問題.
(1)本次調查共抽取 名學生;
(2)求出扇形統(tǒng)計圖中“C”所對扇形的圓心角的度數,并將條形統(tǒng)計圖補充完整;
(3)若該中學共有學生3000人,估計有多少學生在上下學交通方式中選擇坐公交車?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是高,CE是中線,DG垂直平分CE,連接DE.
(1)求證:DC=BE;
(2)若∠AEC=72°,求∠BCE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用若干個形狀、大小完全相同的矩形紙片圍成正方形,4個矩形紙片圍成如圖①所示的正方形,其陰影部分的面積為12;8個矩形紙片圍成如圖②所示的正方形,其陰影部分的面積為8;12個矩形紙片圍成如圖③所示的正方形,其陰影部分的面積為__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)(觀察發(fā)現)如圖 1,△ABC 和△CDE 都是等邊三角形,且點 B、C、E 在一條直線上,連接 BD 和AE,BD、AE 相交于點 P,則線段 BD 與 AE 的數量關系是 ,BD 與 AE 相交構成的銳角的度數是 .(只要求寫出結論,不必說明理由)
(2)(深入探究 1)如圖 2,△ABC 和△CDE 都是等邊三角形,連接 BD 和 AE,BD、AE 相交于點 P,猜想線段 BD 與 AE 的數量關系,以及 BD 與 AE 相交構成的銳角的度數. 請說明理由 結論:
理由:_______________________
(3)(深入探究 2)如圖 3,△ABC 和△CDE 都是等腰直角三角形,且∠ACB=∠DCE=90°,連接 AD、BE,Q 為 AD 中點,連接 QC 并延長交 BE 于 K. 求證:QK⊥BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,M,N分別是CD,BC的中點,且AM⊥CD,AN⊥BC。
(1)求證:∠BAD=2∠MAN;
(2)連接BD,若∠MAN=70°,∠DBC=40°,求∠ADC。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t
(分)之間的關系如圖所示,下列結論:
①甲步行的速度為60米/分;
②乙走完全程用了30分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有320米
其中正確的結論有( )
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數據:sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結果用根號表示,不取近似值).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com