【題目】如圖,在五邊形ABCDEAB=AC=AD=AE, ABED,AED=70°則∠DCB=( 。

A. 70° B. 165° C. 155° D. 145°

【答案】D

【解析】∵AB∥ED,

∴∠EAB+∠AED=180°,

AED=70°

∴∠EAB=110°,

∵AD=AE,AED=70°,

∴∠DAE=40°,

∴∠BAD=∠EAB -∠DAE=70°,

在四邊形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,

∴∠ABC+∠BCD+∠ADC=290°,

∵AB=AC=AD,

∴∠B=∠ACB,∠ACD=∠ADC,

∵∠B+∠ACB+∠ACD+∠ADC=290°,

∴∠ACB+∠ACD=145°,即∠DCB=145°.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A=(x+y2,B=(xy2,則AB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐘表上的時間是235分,此時時針與分針?biāo)傻膴A角是_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年母女兩人的年齡和為60歲,10年前母親的年齡是女兒的7倍,則今年母親、女兒的年齡各是多少歲?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作等腰直角三角形ADE,AD=AE,∠DAE=90.解答下列問題:

(1) 如果AB=AC,∠BAC=90.

①當(dāng)點D在線段BC上時(與點B不重合),如圖乙,線段CE、BD之間的位置關(guān)系為,數(shù)量關(guān)系為.(不用證明)

②當(dāng)點D在線段BC的延長線上時,如圖丙,①中的結(jié)論是否仍然成立,為什么?

(2) 如果AB≠AC,∠BAC≠90,點D在線段BC上運動.

試探究:當(dāng)△ABC滿足一個什么條件時,CE⊥BD(點C、E重合除外)?畫出相應(yīng)的圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、E分別在ACDF上,AF分別交BDCE于點M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A1,1),B3,2),將點A向左平移兩個單位,再向上平移4個單位得到點C

1)寫出點C坐標(biāo);

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊A1C1C2的周長為1,作C1D1A1C2D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊A2C2C3;作C2D2A2C3D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊A3C3C4且點A1,A2,A3,都在直線C1C2同側(cè),如此下去,則A1C1C2,A2C2C3,A3C3C4,,AnCnCn+1的周長和為______.(n≥2,且n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3的相反數(shù)是(

A.0B.3C.-3D.6

查看答案和解析>>

同步練習(xí)冊答案