【題目】定義:點P(a,b)關于原點的對稱點為P′,以PP′為邊作等邊△PP′C,則稱點C為P的“等邊對稱點”;
(1)若P(1,3),求點P的“等邊對稱點”的坐標.
(2)平面內有一點P(1,2),若它其中的一個“等邊對稱點”C在第四象限時,請求此C點的坐標;
(3)若P點是雙曲線y=(x>0)上一動點,當點P的“等邊對稱點”點C在第四象限時,
①如圖(1),請問點C是否也會在某一函數(shù)圖象上運動?如果是,請求出此函數(shù)的解析式;如果不是,請說明理由.
②如圖(2),已知點A (1,2),B (2,1),點G是線段AB上的動點,點F在y軸上,若以A、G、F、C這四個點為頂點的四邊形是平行四邊形時,求點C的縱坐標yc的取值范圍.
【答案】(1)C 或C(;(3)yc≤﹣6或﹣3<yc≤﹣2;
【解析】
(1)由定義可知P’的坐標,設C坐標為(m,n),進而根據(jù)兩點坐標公式和等邊三角形三邊相等即可列出方程求解即可.
(2)同(1)求出點C坐標,根據(jù)它其中的一個“等邊對稱點”C在第四象限可得C點坐標.
(3)①設P(c,),則P'(﹣c,﹣),設C點坐標為(s,t),同(1)列方程組即可求出C點坐標為,即可求出點C運動的函數(shù)解析式.
②設G點橫坐標為t,則由直線AB解析式可知G點坐標為(t,-t+3),由F點在x軸可知其橫坐標為0,分兩種情況可:I. 當AG為平行四邊形的邊時,則C點坐標為(t-1,yc),II.AG為對角線,則C點坐標為(2t,yc)因為C在上,故由t的取值范圍即可確定yc的取值范圍.
解:(1)∵P(1,3),
∴P'(﹣1,﹣3),
∴PP'2=40,
∴PC2=P'C2=40,
設C(a,b),
∴a=﹣3b,
∴b=,
∴C(3,﹣)或C(﹣3,);
(2))∵P(1,2),
∴P'(﹣1,﹣2),
∴PP'2=20,
∴PC2=P'C2=20,
設C(a,b),
∴,
∴a=﹣2b,
∴b=,
∴C(2,﹣)或C(﹣2,),
∵C在第四象限,
∴C(2,﹣);
(3)①設P(c,),
∴P'(﹣c,﹣),
∴PP'2=,
PC2=P'C2=,
設C(s,t),
∴,
∴s=,
∴t2=3c2,
∴t= ,
∴C 或C,
∴點C在第四象限,c>0,
∴C,
令,
∴xy=﹣6,即y=(x>0);
②∵A(1,2),B(2,1),
∴經(jīng)過AB直線為y=-x+3,
設G點為(t,3-t),
I. 當AG為平行四邊形的邊時,
∵F在y軸上,故C點橫坐標為t-1,
又∵點C在y=(x>0)上,
∴,
∵G在線段AB上,
∴1<t≤2,
∴≤-6,
II.當AG為對角線時,F(xiàn)在y軸上,故C點橫坐標為2t,
∴,
∵G在線段AB上,
∴1<t≤2,
∴-3<≤2.
綜上所述:yc≤﹣6或﹣3<yc≤﹣2;
科目:初中數(shù)學 來源: 題型:
【題目】任意拋擲一枚質地均勻的正方體骰子2次,骰子的6個面上分別刻有1到6的點數(shù),記第一次擲得面朝上的點數(shù)為橫坐標,第二次擲得面朝上的點數(shù)為縱坐標,這樣組成的點的坐標恰好在正比例函數(shù)y=x上的概率為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將等邊三角形ABC折疊,使得點A落在BC邊上的點D處,折痕為EF,點E,F分別在AB和AC邊上.若AB=6,BD=2,則AE:AF的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點E為AD的中點,點P為線段AB上一個動點,連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當△ECF為直角三角形時,AP的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.
(1)求拋物線的解板式.
(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.
(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了提高學生學科能力,決定開設以下校本課程:A.文學院;B.小小數(shù)學家;C.小小外交家;D、未來科學家.為了了解學生最喜歡哪一項校本課程,學校隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次統(tǒng)計共抽查了 名學生;在扇形統(tǒng)計圖中,表示C類別的扇形圓心角度數(shù)為 .
(2)補全條形統(tǒng)計圖;
(3)一班想從表達能力很強的甲、乙、丙、丁四名同學中,任選2名參加小小外交家小組,請用列表或畫樹狀圖的方法求恰好同時選中甲、乙兩名同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為4,∠A=60°,E是邊AD的中點,F是邊BC上的一個動點,EG=EF,且∠GEF=60°,則GB+GC的最小值為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com