【題目】某農(nóng)機(jī)廠4月份生產(chǎn)零件50萬(wàn)個(gè),第二季度共生產(chǎn)零件182萬(wàn)個(gè).設(shè)該廠5,6月份平均每月的增長(zhǎng)率為x,那么x滿足的方程是(  )

A. 50(1+x)2=182; B. 50+50(1+x)+50(1+x)2=182

C. 50(1+2x)=182; D. 50+50(1+x)+50(1+2x)=182

【答案】B

【解析】由已知可得五月份生產(chǎn)的零件個(gè)數(shù)是在四月份的基礎(chǔ)上增加的,所以為50(1+x),同理可得6月份生產(chǎn)的零件個(gè)數(shù)是在五月份的基礎(chǔ)上增加的,為50(1+x)(1+x),

所以得:50+50×(1+x)+50(1+x)2=182.故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,順次連接矩形ABCD四邊的中點(diǎn)得到四邊形A1B1C1D1,然后順次連接四邊形A1B1C1D1的中點(diǎn)得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點(diǎn)得到四邊形A3B3C3D3,…,已知AB=6, BC=8,按此方法得到的四邊形A5B5C5D5的周長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)某商場(chǎng)用2500元購(gòu)進(jìn)了A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià),標(biāo)價(jià)如下表所示:

(1)這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?

(2)若A型臺(tái)燈按標(biāo)價(jià)的九折出售,B型臺(tái)燈按標(biāo)價(jià)的八折出售,那么這批臺(tái)燈全部售完后,商場(chǎng)共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/秒.設(shè)P、Q同發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖2)(曲線OM為拋物線的一部分,則下列結(jié)論:

①AD=BE=5;

②cos∠ABE=;

③當(dāng)0<t≤5時(shí),y=t2;

④當(dāng)t=秒時(shí),△ABE∽△QBP;

其中正確的結(jié)論是 填序號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】氣溫由﹣2℃上升3℃后是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】火車(chē)勻速通過(guò)隧道時(shí),火車(chē)在隧道內(nèi)的長(zhǎng)度(米)與火車(chē)行駛時(shí)間(秒)之間的關(guān)系用圖象描述如圖所示,有下列結(jié)論:

火車(chē)的長(zhǎng)度為120米;

火車(chē)的速度為30/秒;

火車(chē)整體都在隧道內(nèi)的時(shí)間為25秒;

隧道長(zhǎng)度為750米.

其中正確的結(jié)論是 .(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分別交CE、AE于點(diǎn)G、H.試猜測(cè)線段AE和BD的位置和數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形三條高的交點(diǎn)一定在(

A. 三角形的內(nèi)部 B. 三角形的外部 C. 三角形的內(nèi)部或外部 D. 三角形的內(nèi)部、外部或頂點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DEABE,FAC上,BD=DF.

(1)求證:CF=EB

(2)若AF=2,EB=1,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案